class StreamingLogisticRegressionWithSGD extends StreamingLinearAlgorithm[LogisticRegressionModel, LogisticRegressionWithSGD] with Serializable
Train or predict a logistic regression model on streaming data. Training uses
Stochastic Gradient Descent to update the model based on each new batch of
incoming data from a DStream (see LogisticRegressionWithSGD for model equation)
Each batch of data is assumed to be an RDD of LabeledPoints. The number of data points per batch can vary, but the number of features must be constant. An initial weight vector must be provided.
Use a builder pattern to construct a streaming logistic regression analysis in an application, like:
val model = new StreamingLogisticRegressionWithSGD() .setStepSize(0.5) .setNumIterations(10) .setInitialWeights(Vectors.dense(...)) .trainOn(DStream)
- Annotations
 - @Since( "1.3.0" )
 - Source
 - StreamingLogisticRegressionWithSGD.scala
 
- Alphabetic
 - By Inheritance
 
- StreamingLogisticRegressionWithSGD
 - Serializable
 - Serializable
 - StreamingLinearAlgorithm
 - Logging
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
- 
      
      
      
        
      
    
      
        
        new
      
      
        StreamingLogisticRegressionWithSGD()
      
      
      
Construct a StreamingLogisticRegression object with default parameters: {stepSize: 0.1, numIterations: 50, miniBatchFraction: 1.0, regParam: 0.0}.
Construct a StreamingLogisticRegression object with default parameters: {stepSize: 0.1, numIterations: 50, miniBatchFraction: 1.0, regParam: 0.0}. Initial weights must be set before using trainOn or predictOn (see
StreamingLinearAlgorithm)- Annotations
 - @Since( "1.3.0" )
 
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        algorithm: LogisticRegressionWithSGD
      
      
      
The algorithm to use for updating.
The algorithm to use for updating.
- Attributes
 - protected
 - Definition Classes
 - StreamingLogisticRegressionWithSGD → StreamingLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        latestModel(): LogisticRegressionModel
      
      
      
Return the latest model.
Return the latest model.
- Definition Classes
 - StreamingLinearAlgorithm
 - Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        model: Option[LogisticRegressionModel]
      
      
      
The model to be updated and used for prediction.
The model to be updated and used for prediction.
- Attributes
 - protected
 - Definition Classes
 - StreamingLogisticRegressionWithSGD → StreamingLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictOn(data: JavaDStream[Vector]): JavaDStream[Double]
      
      
      
Java-friendly version of
predictOn.Java-friendly version of
predictOn.- Definition Classes
 - StreamingLinearAlgorithm
 - Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictOn(data: DStream[Vector]): DStream[Double]
      
      
      
Use the model to make predictions on batches of data from a DStream
Use the model to make predictions on batches of data from a DStream
- data
 DStream containing feature vectors
- returns
 DStream containing predictions
- Definition Classes
 - StreamingLinearAlgorithm
 - Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictOnValues[K](data: JavaPairDStream[K, Vector]): JavaPairDStream[K, Double]
      
      
      
Java-friendly version of
predictOnValues.Java-friendly version of
predictOnValues.- Definition Classes
 - StreamingLinearAlgorithm
 - Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictOnValues[K](data: DStream[(K, Vector)])(implicit arg0: ClassTag[K]): DStream[(K, Double)]
      
      
      
Use the model to make predictions on the values of a DStream and carry over its keys.
Use the model to make predictions on the values of a DStream and carry over its keys.
- K
 key type
- data
 DStream containing feature vectors
- returns
 DStream containing the input keys and the predictions as values
- Definition Classes
 - StreamingLinearAlgorithm
 - Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setInitialWeights(initialWeights: Vector): StreamingLogisticRegressionWithSGD.this.type
      
      
      
Set the initial weights.
Set the initial weights. Default: [0.0, 0.0].
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMiniBatchFraction(miniBatchFraction: Double): StreamingLogisticRegressionWithSGD.this.type
      
      
      
Set the fraction of each batch to use for updates.
Set the fraction of each batch to use for updates. Default: 1.0.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setNumIterations(numIterations: Int): StreamingLogisticRegressionWithSGD.this.type
      
      
      
Set the number of iterations of gradient descent to run per update.
Set the number of iterations of gradient descent to run per update. Default: 50.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setRegParam(regParam: Double): StreamingLogisticRegressionWithSGD.this.type
      
      
      
Set the regularization parameter.
Set the regularization parameter. Default: 0.0.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setStepSize(stepSize: Double): StreamingLogisticRegressionWithSGD.this.type
      
      
      
Set the step size for gradient descent.
Set the step size for gradient descent. Default: 0.1.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        trainOn(data: JavaDStream[LabeledPoint]): Unit
      
      
      
Java-friendly version of
trainOn.Java-friendly version of
trainOn.- Definition Classes
 - StreamingLinearAlgorithm
 - Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        trainOn(data: DStream[LabeledPoint]): Unit
      
      
      
Update the model by training on batches of data from a DStream.
Update the model by training on batches of data from a DStream. This operation registers a DStream for training the model, and updates the model based on every subsequent batch of data from the stream.
- data
 DStream containing labeled data
- Definition Classes
 - StreamingLinearAlgorithm
 - Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()