object SVMWithSGD extends Serializable
Top-level methods for calling SVM.
- Annotations
 - @Since( "0.8.0" )
 - Source
 - SVM.scala
 - Note
 Labels used in SVM should be {0, 1}.
- Alphabetic
 - By Inheritance
 
- SVMWithSGD
 - Serializable
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(input: RDD[LabeledPoint], numIterations: Int): SVMModel
      
      
      
Train a SVM model given an RDD of (label, features) pairs.
Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using a step size of 1.0. We use the entire data set to update the gradient in each iteration.
- input
 RDD of (label, array of features) pairs.
- numIterations
 Number of iterations of gradient descent to run.
- returns
 a SVMModel which has the weights and offset from training.
- Annotations
 - @Since( "0.8.0" )
 - Note
 Labels used in SVM should be {0, 1}
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double): SVMModel
      
      
      
Train a SVM model given an RDD of (label, features) pairs.
Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. We use the entire data set to update the gradient in each iteration.
- input
 RDD of (label, array of features) pairs.
- numIterations
 Number of iterations of gradient descent to run.
- stepSize
 Step size to be used for each iteration of Gradient Descent.
- regParam
 Regularization parameter.
- returns
 a SVMModel which has the weights and offset from training.
- Annotations
 - @Since( "0.8.0" )
 - Note
 Labels used in SVM should be {0, 1}
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double, miniBatchFraction: Double): SVMModel
      
      
      
Train a SVM model given an RDD of (label, features) pairs.
Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. Each iteration uses
miniBatchFractionfraction of the data to calculate the gradient.- input
 RDD of (label, array of features) pairs.
- numIterations
 Number of iterations of gradient descent to run.
- stepSize
 Step size to be used for each iteration of gradient descent.
- regParam
 Regularization parameter.
- miniBatchFraction
 Fraction of data to be used per iteration.
- Annotations
 - @Since( "0.8.0" )
 - Note
 Labels used in SVM should be {0, 1}
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double, miniBatchFraction: Double, initialWeights: Vector): SVMModel
      
      
      
Train a SVM model given an RDD of (label, features) pairs.
Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. Each iteration uses
miniBatchFractionfraction of the data to calculate the gradient. The weights used in gradient descent are initialized using the initial weights provided.- input
 RDD of (label, array of features) pairs.
- numIterations
 Number of iterations of gradient descent to run.
- stepSize
 Step size to be used for each iteration of gradient descent.
- regParam
 Regularization parameter.
- miniBatchFraction
 Fraction of data to be used per iteration.
- initialWeights
 Initial set of weights to be used. Array should be equal in size to the number of features in the data.
- Annotations
 - @Since( "0.8.0" )
 - Note
 Labels used in SVM should be {0, 1}.
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()