object NaiveBayes extends Serializable
Top-level methods for calling naive Bayes.
- Annotations
 - @Since( "0.9.0" )
 - Source
 - NaiveBayes.scala
 
- Alphabetic
 - By Inheritance
 
- NaiveBayes
 - Serializable
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(input: RDD[LabeledPoint], lambda: Double, modelType: String): NaiveBayesModel
      
      
      
Trains a Naive Bayes model given an RDD of
(label, features)pairs.Trains a Naive Bayes model given an RDD of
(label, features)pairs.The model type can be set to either Multinomial NB (see here) or Bernoulli NB (see here). The Multinomial NB can handle discrete count data and can be called by setting the model type to "multinomial". For example, it can be used with word counts or TF_IDF vectors of documents. The Bernoulli model fits presence or absence (0-1) counts. By making every vector a 0-1 vector and setting the model type to "bernoulli", the fits and predicts as Bernoulli NB.
- input
 RDD of
(label, array of features)pairs. Every vector should be a frequency vector or a count vector.- lambda
 The smoothing parameter
- modelType
 The type of NB model to fit from the enumeration NaiveBayesModels, can be multinomial or bernoulli
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(input: RDD[LabeledPoint], lambda: Double): NaiveBayesModel
      
      
      
Trains a Naive Bayes model given an RDD of
(label, features)pairs.Trains a Naive Bayes model given an RDD of
(label, features)pairs.This is the default Multinomial NB (see here) which can handle all kinds of discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification.
- input
 RDD of
(label, array of features)pairs. Every vector should be a frequency vector or a count vector.- lambda
 The smoothing parameter
- Annotations
 - @Since( "0.9.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(input: RDD[LabeledPoint]): NaiveBayesModel
      
      
      
Trains a Naive Bayes model given an RDD of
(label, features)pairs.Trains a Naive Bayes model given an RDD of
(label, features)pairs.This is the default Multinomial NB (see here) which can handle all kinds of discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification.
This version of the method uses a default smoothing parameter of 1.0.
- input
 RDD of
(label, array of features)pairs. Every vector should be a frequency vector or a count vector.
- Annotations
 - @Since( "0.9.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()