org.apache.spark.mllib.classification
LogisticRegressionModel 
            Companion object LogisticRegressionModel
          
      class LogisticRegressionModel extends GeneralizedLinearModel with ClassificationModel with Serializable with Saveable with PMMLExportable
Classification model trained using Multinomial/Binary Logistic Regression.
- Annotations
 - @Since( "0.8.0" )
 - Source
 - LogisticRegression.scala
 
- Alphabetic
 - By Inheritance
 
- LogisticRegressionModel
 - PMMLExportable
 - Saveable
 - ClassificationModel
 - GeneralizedLinearModel
 - Serializable
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
- 
      
      
      
        
      
    
      
        
        new
      
      
        LogisticRegressionModel(weights: Vector, intercept: Double)
      
      
      
Constructs a LogisticRegressionModel with weights and intercept for binary classification.
Constructs a LogisticRegressionModel with weights and intercept for binary classification.
- Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        new
      
      
        LogisticRegressionModel(weights: Vector, intercept: Double, numFeatures: Int, numClasses: Int)
      
      
      
- weights
 Weights computed for every feature.
- intercept
 Intercept computed for this model. (Only used in Binary Logistic Regression. In Multinomial Logistic Regression, the intercepts will not be a single value, so the intercepts will be part of the weights.)
- numFeatures
 the dimension of the features.
- numClasses
 the number of possible outcomes for k classes classification problem in Multinomial Logistic Regression. By default, it is binary logistic regression so numClasses will be set to 2.
- Annotations
 - @Since( "1.3.0" )
 
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clearThreshold(): LogisticRegressionModel.this.type
      
      
      
Clears the threshold so that
predictwill output raw prediction scores.Clears the threshold so that
predictwill output raw prediction scores. It is only used for binary classification.- Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getThreshold: Option[Double]
      
      
      
Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions.
Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions. It is only used for binary classification.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        intercept: Double
      
      
      
- Definition Classes
 - LogisticRegressionModel → GeneralizedLinearModel
 - Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        numClasses: Int
      
      
      
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        numFeatures: Int
      
      
      
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(testData: JavaRDD[Vector]): JavaRDD[Double]
      
      
      
Predict values for examples stored in a JavaRDD.
Predict values for examples stored in a JavaRDD.
- testData
 JavaRDD representing data points to be predicted
- returns
 a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction
- Definition Classes
 - ClassificationModel
 - Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(testData: Vector): Double
      
      
      
Predict values for a single data point using the model trained.
Predict values for a single data point using the model trained.
- testData
 array representing a single data point
- returns
 Double prediction from the trained model
- Definition Classes
 - GeneralizedLinearModel
 - Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(testData: RDD[Vector]): RDD[Double]
      
      
      
Predict values for the given data set using the model trained.
Predict values for the given data set using the model trained.
- testData
 RDD representing data points to be predicted
- returns
 RDD[Double] where each entry contains the corresponding prediction
- Definition Classes
 - GeneralizedLinearModel
 - Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double): Double
      
      
      
Predict the result given a data point and the weights learned.
Predict the result given a data point and the weights learned.
- dataMatrix
 Row vector containing the features for this data point
- weightMatrix
 Column vector containing the weights of the model
- intercept
 Intercept of the model.
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionModel → GeneralizedLinearModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(sc: SparkContext, path: String): Unit
      
      
      
Save this model to the given path.
Save this model to the given path.
This saves:
- human-readable (JSON) model metadata to path/metadata/
 - Parquet formatted data to path/data/
 
The model may be loaded using
Loader.load.- sc
 Spark context used to save model data.
- path
 Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.
- Definition Classes
 - LogisticRegressionModel → Saveable
 - Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setThreshold(threshold: Double): LogisticRegressionModel.this.type
      
      
      
Sets the threshold that separates positive predictions from negative predictions in Binary Logistic Regression.
Sets the threshold that separates positive predictions from negative predictions in Binary Logistic Regression. An example with prediction score greater than or equal to this threshold is identified as a positive, and negative otherwise. The default value is 0.5. It is only used for binary classification.
- Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toPMML(): String
      
      
      
Export the model to a String in PMML format
Export the model to a String in PMML format
- Definition Classes
 - PMMLExportable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toPMML(outputStream: OutputStream): Unit
      
      
      
Export the model to the OutputStream in PMML format
Export the model to the OutputStream in PMML format
- Definition Classes
 - PMMLExportable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toPMML(sc: SparkContext, path: String): Unit
      
      
      
Export the model to a directory on a distributed file system in PMML format
Export the model to a directory on a distributed file system in PMML format
- Definition Classes
 - PMMLExportable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toPMML(localPath: String): Unit
      
      
      
Export the model to a local file in PMML format
Export the model to a local file in PMML format
- Definition Classes
 - PMMLExportable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
Print a summary of the model.
Print a summary of the model.
- Definition Classes
 - LogisticRegressionModel → GeneralizedLinearModel → AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        weights: Vector
      
      
      
- Definition Classes
 - LogisticRegressionModel → GeneralizedLinearModel
 - Annotations
 - @Since( "1.0.0" )