class LogisticRegressionWithSGD extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable
Train a classification model for Binary Logistic Regression
using Stochastic Gradient Descent. By default L2 regularization is used,
which can be changed via LogisticRegressionWithSGD.optimizer.
Using LogisticRegressionWithLBFGS is recommended over this.
- Annotations
 - @Since( "0.8.0" )
 - Source
 - LogisticRegression.scala
 - Note
 Labels used in Logistic Regression should be {0, 1, ..., k - 1} for k classes multi-label classification problem.
- Alphabetic
 - By Inheritance
 
- LogisticRegressionWithSGD
 - GeneralizedLinearAlgorithm
 - Serializable
 - Serializable
 - Logging
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        addIntercept: Boolean
      
      
      
Whether to add intercept (default: false).
Whether to add intercept (default: false).
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        createModel(weights: Vector, intercept: Double): LogisticRegressionModel
      
      
      
Create a model given the weights and intercept
Create a model given the weights and intercept
- Attributes
 - protected[mllib]
 - Definition Classes
 - LogisticRegressionWithSGD → GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        generateInitialWeights(input: RDD[LabeledPoint]): Vector
      
      
      
Generate the initial weights when the user does not supply them
Generate the initial weights when the user does not supply them
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getNumFeatures: Int
      
      
      
The dimension of training features.
The dimension of training features.
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isAddIntercept: Boolean
      
      
      
Get if the algorithm uses addIntercept
Get if the algorithm uses addIntercept
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        numFeatures: Int
      
      
      
The dimension of training features.
The dimension of training features.
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        numOfLinearPredictor: Int
      
      
      
In
GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept.In
GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept. However, for multinomial logistic regression, with K possible outcomes, we are training K-1 independent binary logistic regression models which requires K-1 sets of linear predictor.As a result, the workaround here is if more than two sets of linear predictors are needed, we construct bigger
weightsvector which can hold both weights and intercepts. If the intercepts are added, the dimension ofweightswill be (numOfLinearPredictor) * (numFeatures + 1) . If the intercepts are not added, the dimension ofweightswill be (numOfLinearPredictor) * numFeatures.Thus, the intercepts will be encapsulated into weights, and we leave the value of intercept in GeneralizedLinearModel as zero.
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        optimizer: GradientDescent
      
      
      
The optimizer to solve the problem.
The optimizer to solve the problem.
- Definition Classes
 - LogisticRegressionWithSGD → GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        run(input: RDD[LabeledPoint], initialWeights: Vector): LogisticRegressionModel
      
      
      
Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided.
Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided.
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        run(input: RDD[LabeledPoint]): LogisticRegressionModel
      
      
      
Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.
Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setIntercept(addIntercept: Boolean): LogisticRegressionWithSGD.this.type
      
      
      
Set if the algorithm should add an intercept.
Set if the algorithm should add an intercept. Default false. We set the default to false because adding the intercept will cause memory allocation.
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setValidateData(validateData: Boolean): LogisticRegressionWithSGD.this.type
      
      
      
Set if the algorithm should validate data before training.
Set if the algorithm should validate data before training. Default true.
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        validateData: Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        validators: List[(RDD[LabeledPoint]) ⇒ Boolean]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionWithSGD → GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()