Package org.apache.spark.ml.evaluation
Class RankingEvaluator
Object
org.apache.spark.ml.evaluation.Evaluator
org.apache.spark.ml.evaluation.RankingEvaluator
- All Implemented Interfaces:
- Serializable,- Params,- HasLabelCol,- HasPredictionCol,- DefaultParamsWritable,- Identifiable,- MLWritable
public class RankingEvaluator
extends Evaluator
implements HasPredictionCol, HasLabelCol, DefaultParamsWritable
:: Experimental ::
 Evaluator for ranking, which expects two input columns: prediction and label.
- See Also:
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.doubleEvaluates model output and returns a scalar metric.intgetK()getMetrics(Dataset<?> dataset) Get a RankingMetrics, which can be used to get ranking metrics such as meanAveragePrecision, meanAveragePrecisionAtK, etc.booleanIndicates whether the metric returned byevaluateshould be maximized (true, default) or minimized (false).final IntParamk()param for ranking position value used in"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK".labelCol()Param for label column name.static RankingEvaluatorparam for metric name in evaluation (supports"meanAveragePrecision"(default),"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK")Param for prediction column name.static MLReader<T>read()setK(int value) setLabelCol(String value) setMetricName(String value) setPredictionCol(String value) toString()uid()An immutable unique ID for the object and its derivatives.Methods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritablewriteMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionColMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Constructor Details- 
RankingEvaluator
- 
RankingEvaluatorpublic RankingEvaluator()
 
- 
- 
Method Details- 
load
- 
read
- 
labelColDescription copied from interface:HasLabelColParam for label column name.- Specified by:
- labelColin interface- HasLabelCol
- Returns:
- (undocumented)
 
- 
predictionColDescription copied from interface:HasPredictionColParam for prediction column name.- Specified by:
- predictionColin interface- HasPredictionCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
metricNameparam for metric name in evaluation (supports"meanAveragePrecision"(default),"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK")- Returns:
- (undocumented)
 
- 
getMetricName
- 
setMetricName
- 
kparam for ranking position value used in"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK". Must be > 0. The default value is 10.- Returns:
- (undocumented)
 
- 
getKpublic int getK()
- 
setK
- 
setPredictionCol
- 
setLabelCol
- 
evaluateDescription copied from class:EvaluatorEvaluates model output and returns a scalar metric. The value ofEvaluator.isLargerBetter()specifies whether larger values are better.
- 
getMetricsGet a RankingMetrics, which can be used to get ranking metrics such as meanAveragePrecision, meanAveragePrecisionAtK, etc.- Parameters:
- dataset- a dataset that contains labels/observations and predictions.
- Returns:
- RankingMetrics
 
- 
isLargerBetterpublic boolean isLargerBetter()Description copied from class:EvaluatorIndicates whether the metric returned byevaluateshould be maximized (true, default) or minimized (false). A given evaluator may support multiple metrics which may be maximized or minimized.- Overrides:
- isLargerBetterin class- Evaluator
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
 
-