class LinearRegressionTrainingSummary extends LinearRegressionSummary
Linear regression training results. Currently, the training summary ignores the training weights except for the objective trace.
- Annotations
 - @Since( "1.5.0" )
 - Source
 - LinearRegression.scala
 
- Alphabetic
 - By Inheritance
 
- LinearRegressionTrainingSummary
 - LinearRegressionSummary
 - Serializable
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        coefficientStandardErrors: Array[Double]
      
      
      
Standard error of estimated coefficients and intercept.
Standard error of estimated coefficients and intercept. This value is only available when using the "normal" solver.
If
LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- Definition Classes
 - LinearRegressionSummary
 - See also
 LinearRegression.solver
 - 
      
      
      
        
      
    
      
        
        val
      
      
        degreesOfFreedom: Long
      
      
      
Degrees of freedom
Degrees of freedom
- Definition Classes
 - LinearRegressionSummary
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        devianceResiduals: Array[Double]
      
      
      
The weighted residuals, the usual residuals rescaled by the square root of the instance weights.
The weighted residuals, the usual residuals rescaled by the square root of the instance weights.
- Definition Classes
 - LinearRegressionSummary
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        explainedVariance: Double
      
      
      
Returns the explained variance regression score.
Returns the explained variance regression score. explainedVariance = 1 - variance(y - \hat{y}) / variance(y) Reference: Wikipedia explain variation
- Definition Classes
 - LinearRegressionSummary
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        featuresCol: String
      
      
      
- Definition Classes
 - LinearRegressionSummary
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        labelCol: String
      
      
      
- Definition Classes
 - LinearRegressionSummary
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        meanAbsoluteError: Double
      
      
      
Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.
Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.
- Definition Classes
 - LinearRegressionSummary
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        meanSquaredError: Double
      
      
      
Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.
Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.
- Definition Classes
 - LinearRegressionSummary
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        numInstances: Long
      
      
      
Number of instances in DataFrame predictions
Number of instances in DataFrame predictions
- Definition Classes
 - LinearRegressionSummary
 
 -  val objectiveHistory: Array[Double]
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        pValues: Array[Double]
      
      
      
Two-sided p-value of estimated coefficients and intercept.
Two-sided p-value of estimated coefficients and intercept. This value is only available when using the "normal" solver.
If
LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- Definition Classes
 - LinearRegressionSummary
 - See also
 LinearRegression.solver
 - 
      
      
      
        
      
    
      
        
        val
      
      
        predictionCol: String
      
      
      
- Definition Classes
 - LinearRegressionSummary
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        predictions: DataFrame
      
      
      
- Definition Classes
 - LinearRegressionSummary
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        r2: Double
      
      
      
Returns R2, the coefficient of determination.
Returns R2, the coefficient of determination. Reference: Wikipedia coefficient of determination
- Definition Classes
 - LinearRegressionSummary
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        r2adj: Double
      
      
      
Returns Adjusted R2, the adjusted coefficient of determination.
Returns Adjusted R2, the adjusted coefficient of determination. Reference: Wikipedia coefficient of determination
- Definition Classes
 - LinearRegressionSummary
 - Annotations
 - @Since( "2.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        residuals: DataFrame
      
      
      
Residuals (label - predicted value)
Residuals (label - predicted value)
- Definition Classes
 - LinearRegressionSummary
 - Annotations
 - @Since( "1.5.0" ) @transient()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        rootMeanSquaredError: Double
      
      
      
Returns the root mean squared error, which is defined as the square root of the mean squared error.
Returns the root mean squared error, which is defined as the square root of the mean squared error.
- Definition Classes
 - LinearRegressionSummary
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        tValues: Array[Double]
      
      
      
T-statistic of estimated coefficients and intercept.
T-statistic of estimated coefficients and intercept. This value is only available when using the "normal" solver.
If
LinearRegression.fitInterceptis set to true, then the last element returned corresponds to the intercept.- Definition Classes
 - LinearRegressionSummary
 - See also
 LinearRegression.solver
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        totalIterations: Int
      
      
      
Number of training iterations until termination
Number of training iterations until termination
This value is only available when using the "l-bfgs" solver.
- Annotations
 - @Since( "1.5.0" )
 - See also
 LinearRegression.solver
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()