class GBTRegressor extends Regressor[Vector, GBTRegressor, GBTRegressionModel] with GBTRegressorParams with DefaultParamsWritable with Logging
Gradient-Boosted Trees (GBTs) learning algorithm for regression. It supports both continuous and categorical features.
The implementation is based upon: J.H. Friedman. "Stochastic Gradient Boosting." 1999.
Notes on Gradient Boosting vs. TreeBoost:
- This implementation is for Stochastic Gradient Boosting, not for TreeBoost.
 - Both algorithms learn tree ensembles by minimizing loss functions.
 - TreeBoost (Friedman, 1999) additionally modifies the outputs at tree leaf nodes
   based on the loss function, whereas the original gradient boosting method does not.
- When the loss is SquaredError, these methods give the same result, but they could differ for other loss functions.
 
 - We expect to implement TreeBoost in the future: [https://issues.apache.org/jira/browse/SPARK-4240]
 
- Annotations
 - @Since( "1.4.0" )
 - Source
 - GBTRegressor.scala
 
- Grouped
 - Alphabetic
 - By Inheritance
 
- GBTRegressor
 - DefaultParamsWritable
 - MLWritable
 - GBTRegressorParams
 - TreeRegressorParams
 - HasVarianceImpurity
 - TreeEnsembleRegressorParams
 - GBTParams
 - HasValidationIndicatorCol
 - HasStepSize
 - HasMaxIter
 - TreeEnsembleParams
 - DecisionTreeParams
 - HasWeightCol
 - HasSeed
 - HasCheckpointInterval
 - Regressor
 - Predictor
 - PredictorParams
 - HasPredictionCol
 - HasFeaturesCol
 - HasLabelCol
 - Estimator
 - PipelineStage
 - Logging
 - Params
 - Serializable
 - Serializable
 - Identifiable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      
An alias for
getOrDefault().An alias for
getOrDefault().- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        cacheNodeIds: BooleanParam
      
      
      
If false, the algorithm will pass trees to executors to match instances with nodes.
If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        checkpointInterval: IntParam
      
      
      
Param for set checkpoint interval (>= 1) or disable checkpoint (-1).
Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.
- Definition Classes
 - HasCheckpointInterval
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): GBTRegressor.this.type
      
      
      
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): GBTRegressor
      
      
      
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy().- Definition Classes
 - GBTRegressor → Predictor → Estimator → PipelineStage → Params
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
      
      
      
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
 the target instance, which should work with the same set of default Params as this source instance
- extra
 extra params to be copied to the target's
paramMap- returns
 the target instance with param values copied
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      
Explains a param.
Explains a param.
- param
 input param, must belong to this instance.
- returns
 a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      
Explains all params of this instance.
Explains all params of this instance. See
explainParam().- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      
extractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        featureSubsetStrategy: Param[String]
      
      
      
The number of features to consider for splits at each tree node.
The number of features to consider for splits at each tree node. Supported options:
- "auto": Choose automatically for task: If numTrees == 1, set to "all." If numTrees greater than 1 (forest), set to "sqrt" for classification and to "onethird" for regression.
 - "all": use all features
 - "onethird": use 1/3 of the features
 - "sqrt": use sqrt(number of features)
 - "log2": use log2(number of features)
 - "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of features), use n features. (default = "auto")
 
These various settings are based on the following references:
- log2: tested in Breiman (2001)
 - sqrt: recommended by Breiman manual for random forests
 - The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
 
- Definition Classes
 - TreeEnsembleParams
 - See also
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        featuresCol: Param[String]
      
      
      
Param for features column name.
Param for features column name.
- Definition Classes
 - HasFeaturesCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_]): GBTRegressionModel
      
      
      
Fits a model to the input data.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[GBTRegressionModel]
      
      
      
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.
- dataset
 input dataset
- paramMaps
 An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.
- returns
 fitted models, matching the input parameter maps
- Definition Classes
 - Estimator
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMap: ParamMap): GBTRegressionModel
      
      
      
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
- dataset
 input dataset
- paramMap
 Parameter map. These values override any specified in this Estimator's embedded ParamMap.
- returns
 fitted model
- Definition Classes
 - Estimator
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GBTRegressionModel
      
      
      
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
- dataset
 input dataset
- firstParamPair
 the first param pair, overrides embedded params
- otherParamPairs
 other param pairs. These values override any specified in this Estimator's embedded ParamMap.
- returns
 fitted model
- Definition Classes
 - Estimator
 - Annotations
 - @Since( "2.0.0" ) @varargs()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getCacheNodeIds: Boolean
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getCheckpointInterval: Int
      
      
      
- Definition Classes
 - HasCheckpointInterval
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getFeatureSubsetStrategy: String
      
      
      
- Definition Classes
 - TreeEnsembleParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getFeaturesCol: String
      
      
      
- Definition Classes
 - HasFeaturesCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getImpurity: String
      
      
      
- Definition Classes
 - HasVarianceImpurity
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getLabelCol: String
      
      
      
- Definition Classes
 - HasLabelCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getLeafCol: String
      
      
      
- Definition Classes
 - DecisionTreeParams
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getLossType: String
      
      
      
- Definition Classes
 - GBTRegressorParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxBins: Int
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxDepth: Int
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxIter: Int
      
      
      
- Definition Classes
 - HasMaxIter
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxMemoryInMB: Int
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinInfoGain: Double
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinInstancesPerNode: Int
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinWeightFractionPerNode: Double
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      
Gets a param by its name.
Gets a param by its name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getPredictionCol: String
      
      
      
- Definition Classes
 - HasPredictionCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getSeed: Long
      
      
      
- Definition Classes
 - HasSeed
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getStepSize: Double
      
      
      
- Definition Classes
 - HasStepSize
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getSubsamplingRate: Double
      
      
      
- Definition Classes
 - TreeEnsembleParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getValidationIndicatorCol: String
      
      
      
- Definition Classes
 - HasValidationIndicatorCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getValidationTol: Double
      
      
      
- Definition Classes
 - GBTParams
 - Annotations
 - @Since( "2.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getWeightCol: String
      
      
      
- Definition Classes
 - HasWeightCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        impurity: Param[String]
      
      
      
Criterion used for information gain calculation (case-insensitive).
Criterion used for information gain calculation (case-insensitive). This impurity type is used in DecisionTreeRegressor, RandomForestRegressor, GBTRegressor and GBTClassifier (since GBTClassificationModel is internally composed of DecisionTreeRegressionModels). Supported: "variance". (default = variance)
- Definition Classes
 - HasVarianceImpurity
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        labelCol: Param[String]
      
      
      
Param for label column name.
Param for label column name.
- Definition Classes
 - HasLabelCol
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        leafCol: Param[String]
      
      
      
Leaf indices column name.
Leaf indices column name. Predicted leaf index of each instance in each tree by preorder. (default = "")
- Definition Classes
 - DecisionTreeParams
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        lossType: Param[String]
      
      
      
Loss function which GBT tries to minimize.
Loss function which GBT tries to minimize. (case-insensitive) Supported: "squared" (L2) and "absolute" (L1) (default = squared)
- Definition Classes
 - GBTRegressorParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxBins: IntParam
      
      
      
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxDepth: IntParam
      
      
      
Maximum depth of the tree (nonnegative).
Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxIter: IntParam
      
      
      
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
 - HasMaxIter
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxMemoryInMB: IntParam
      
      
      
Maximum memory in MB allocated to histogram aggregation.
Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        minInfoGain: DoubleParam
      
      
      
Minimum information gain for a split to be considered at a tree node.
Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        minInstancesPerNode: IntParam
      
      
      
Minimum number of instances each child must have after split.
Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        minWeightFractionPerNode: DoubleParam
      
      
      
Minimum fraction of the weighted sample count that each child must have after split.
Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in the interval [0.0, 0.5). (default = 0.0)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
 - Params
 - Note
 Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        predictionCol: Param[String]
      
      
      
Param for prediction column name.
Param for prediction column name.
- Definition Classes
 - HasPredictionCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      
Saves this ML instance to the input path, a shortcut of
write.save(path).Saves this ML instance to the input path, a shortcut of
write.save(path).- Definition Classes
 - MLWritable
 - Annotations
 - @Since( "1.6.0" ) @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        seed: LongParam
      
      
      
Param for random seed.
Param for random seed.
- Definition Classes
 - HasSeed
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): GBTRegressor.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): GBTRegressor.this.type
      
      
      
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): GBTRegressor.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setCacheNodeIds(value: Boolean): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setCheckpointInterval(value: Int): GBTRegressor.this.type
      
      
      
Specifies how often to checkpoint the cached node IDs.
Specifies how often to checkpoint the cached node IDs. E.g. 10 means that the cache will get checkpointed every 10 iterations. This is only used if cacheNodeIds is true and if the checkpoint directory is set in org.apache.spark.SparkContext. Must be at least 1. (default = 10)
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): GBTRegressor.this.type
      
      
      
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
 a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): GBTRegressor.this.type
      
      
      
Sets a default value for a param.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setFeatureSubsetStrategy(value: String): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "2.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setFeaturesCol(value: String): GBTRegressor
      
      
      
- Definition Classes
 - Predictor
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setImpurity(value: String): GBTRegressor.this.type
      
      
      
The impurity setting is ignored for GBT models.
The impurity setting is ignored for GBT models. Individual trees are built using impurity "Variance."
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setLabelCol(value: String): GBTRegressor
      
      
      
- Definition Classes
 - Predictor
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setLeafCol(value: String): GBTRegressor.this.type
      
      
      
- Definition Classes
 - DecisionTreeParams
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setLossType(value: String): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxBins(value: Int): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxDepth(value: Int): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxIter(value: Int): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxMemoryInMB(value: Int): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMinInfoGain(value: Double): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMinInstancesPerNode(value: Int): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMinWeightFractionPerNode(value: Double): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setPredictionCol(value: String): GBTRegressor
      
      
      
- Definition Classes
 - Predictor
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setSeed(value: Long): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setStepSize(value: Double): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setSubsamplingRate(value: Double): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setValidationIndicatorCol(value: String): GBTRegressor.this.type
      
      
      
- Annotations
 - @Since( "2.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setWeightCol(value: String): GBTRegressor.this.type
      
      
      
Sets the value of param weightCol.
Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. By default the weightCol is not set, so all instances have weight 1.0.
- Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        stepSize: DoubleParam
      
      
      
Param for Step size (a.k.a.
Param for Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of each estimator. (default = 0.1)
- Definition Classes
 - GBTParams → HasStepSize
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        subsamplingRate: DoubleParam
      
      
      
Fraction of the training data used for learning each decision tree, in range (0, 1].
Fraction of the training data used for learning each decision tree, in range (0, 1]. (default = 1.0)
- Definition Classes
 - TreeEnsembleParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - Identifiable → AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(dataset: Dataset[_]): GBTRegressionModel
      
      
      
Train a model using the given dataset and parameters.
Train a model using the given dataset and parameters. Developers can implement this instead of
fit()to avoid dealing with schema validation and copying parameters into the model.- dataset
 Training dataset
- returns
 Fitted model
- Attributes
 - protected
 - Definition Classes
 - GBTRegressor → Predictor
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
 - Predictor → PipelineStage
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
 - protected
 - Definition Classes
 - PipelineStage
 - Annotations
 - @DeveloperApi()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
 - GBTRegressor → Identifiable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
      
      
      
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
- schema
 input schema
- fitting
 whether this is in fitting
- featuresDataType
 SQL DataType for FeaturesType. E.g.,
VectorUDTfor vector features.- returns
 output schema
- Attributes
 - protected
 - Definition Classes
 - TreeEnsembleRegressorParams → PredictorParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        validationIndicatorCol: Param[String]
      
      
      
Param for name of the column that indicates whether each row is for training or for validation.
Param for name of the column that indicates whether each row is for training or for validation. False indicates training; true indicates validation..
- Definition Classes
 - HasValidationIndicatorCol
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        validationTol: DoubleParam
      
      
      
Threshold for stopping early when fit with validation is used.
Threshold for stopping early when fit with validation is used. (This parameter is ignored when fit without validation is used.) The decision to stop early is decided based on this logic: If the current loss on the validation set is greater than 0.01, the diff of validation error is compared to relative tolerance which is validationTol * (current loss on the validation set). If the current loss on the validation set is less than or equal to 0.01, the diff of validation error is compared to absolute tolerance which is validationTol * 0.01.
- Definition Classes
 - GBTParams
 - Annotations
 - @Since( "2.4.0" )
 - See also
 validationIndicatorCol
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        weightCol: Param[String]
      
      
      
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
 - HasWeightCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      
Returns an
MLWriterinstance for this ML instance.Returns an
MLWriterinstance for this ML instance.- Definition Classes
 - DefaultParamsWritable → MLWritable
 
 
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from GBTRegressorParams
Inherited from TreeRegressorParams
Inherited from HasVarianceImpurity
Inherited from TreeEnsembleRegressorParams
Inherited from GBTParams
Inherited from HasValidationIndicatorCol
Inherited from HasStepSize
Inherited from HasMaxIter
Inherited from TreeEnsembleParams
Inherited from DecisionTreeParams
Inherited from HasWeightCol
Inherited from HasSeed
Inherited from HasCheckpointInterval
Inherited from Regressor[Vector, GBTRegressor, GBTRegressionModel]
Inherited from Predictor[Vector, GBTRegressor, GBTRegressionModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[GBTRegressionModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.