org.apache.spark.ml.regression
GeneralizedLinearRegression 
            Companion object GeneralizedLinearRegression
          
      class GeneralizedLinearRegression extends Regressor[Vector, GeneralizedLinearRegression, GeneralizedLinearRegressionModel] with GeneralizedLinearRegressionBase with DefaultParamsWritable with Logging
Fit a Generalized Linear Model (see Generalized linear model (Wikipedia)) specified by giving a symbolic description of the linear predictor (link function) and a description of the error distribution (family). It supports "gaussian", "binomial", "poisson", "gamma" and "tweedie" as family. Valid link functions for each family is listed below. The first link function of each family is the default one.
- "gaussian" : "identity", "log", "inverse"
 - "binomial" : "logit", "probit", "cloglog"
 - "poisson" : "log", "identity", "sqrt"
 - "gamma" : "inverse", "identity", "log"
 - "tweedie" : power link function specified through "linkPower". The default link power in the tweedie family is 1 - variancePower.
 
- Annotations
 - @Since( "2.0.0" )
 - Source
 - GeneralizedLinearRegression.scala
 
- Grouped
 - Alphabetic
 - By Inheritance
 
- GeneralizedLinearRegression
 - DefaultParamsWritable
 - MLWritable
 - GeneralizedLinearRegressionBase
 - HasAggregationDepth
 - HasSolver
 - HasWeightCol
 - HasRegParam
 - HasTol
 - HasMaxIter
 - HasFitIntercept
 - Regressor
 - Predictor
 - PredictorParams
 - HasPredictionCol
 - HasFeaturesCol
 - HasLabelCol
 - Estimator
 - PipelineStage
 - Logging
 - Params
 - Serializable
 - Serializable
 - Identifiable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      
An alias for
getOrDefault().An alias for
getOrDefault().- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        aggregationDepth: IntParam
      
      
      
Param for suggested depth for treeAggregate (>= 2).
Param for suggested depth for treeAggregate (>= 2).
- Definition Classes
 - HasAggregationDepth
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): GeneralizedLinearRegression.this.type
      
      
      
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): GeneralizedLinearRegression
      
      
      
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy().- Definition Classes
 - GeneralizedLinearRegression → Predictor → Estimator → PipelineStage → Params
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
      
      
      
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
 the target instance, which should work with the same set of default Params as this source instance
- extra
 extra params to be copied to the target's
paramMap- returns
 the target instance with param values copied
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      
Explains a param.
Explains a param.
- param
 input param, must belong to this instance.
- returns
 a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      
Explains all params of this instance.
Explains all params of this instance. See
explainParam().- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      
extractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        family: Param[String]
      
      
      
Param for the name of family which is a description of the error distribution to be used in the model.
Param for the name of family which is a description of the error distribution to be used in the model. Supported options: "gaussian", "binomial", "poisson", "gamma" and "tweedie". Default is "gaussian".
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        featuresCol: Param[String]
      
      
      
Param for features column name.
Param for features column name.
- Definition Classes
 - HasFeaturesCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_]): GeneralizedLinearRegressionModel
      
      
      
Fits a model to the input data.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[GeneralizedLinearRegressionModel]
      
      
      
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.
- dataset
 input dataset
- paramMaps
 An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.
- returns
 fitted models, matching the input parameter maps
- Definition Classes
 - Estimator
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMap: ParamMap): GeneralizedLinearRegressionModel
      
      
      
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
- dataset
 input dataset
- paramMap
 Parameter map. These values override any specified in this Estimator's embedded ParamMap.
- returns
 fitted model
- Definition Classes
 - Estimator
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GeneralizedLinearRegressionModel
      
      
      
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
- dataset
 input dataset
- firstParamPair
 the first param pair, overrides embedded params
- otherParamPairs
 other param pairs. These values override any specified in this Estimator's embedded ParamMap.
- returns
 fitted model
- Definition Classes
 - Estimator
 - Annotations
 - @Since( "2.0.0" ) @varargs()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        fitIntercept: BooleanParam
      
      
      
Param for whether to fit an intercept term.
Param for whether to fit an intercept term.
- Definition Classes
 - HasFitIntercept
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getAggregationDepth: Int
      
      
      
- Definition Classes
 - HasAggregationDepth
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getFamily: String
      
      
      
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getFeaturesCol: String
      
      
      
- Definition Classes
 - HasFeaturesCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getFitIntercept: Boolean
      
      
      
- Definition Classes
 - HasFitIntercept
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getLabelCol: String
      
      
      
- Definition Classes
 - HasLabelCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getLink: String
      
      
      
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getLinkPower: Double
      
      
      
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getLinkPredictionCol: String
      
      
      
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxIter: Int
      
      
      
- Definition Classes
 - HasMaxIter
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getOffsetCol: String
      
      
      
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.3.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      
Gets a param by its name.
Gets a param by its name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getPredictionCol: String
      
      
      
- Definition Classes
 - HasPredictionCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getRegParam: Double
      
      
      
- Definition Classes
 - HasRegParam
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getSolver: String
      
      
      
- Definition Classes
 - HasSolver
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getTol: Double
      
      
      
- Definition Classes
 - HasTol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getVariancePower: Double
      
      
      
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getWeightCol: String
      
      
      
- Definition Classes
 - HasWeightCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        labelCol: Param[String]
      
      
      
Param for label column name.
Param for label column name.
- Definition Classes
 - HasLabelCol
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        link: Param[String]
      
      
      
Param for the name of link function which provides the relationship between the linear predictor and the mean of the distribution function.
Param for the name of link function which provides the relationship between the linear predictor and the mean of the distribution function. Supported options: "identity", "log", "inverse", "logit", "probit", "cloglog" and "sqrt". This is used only when family is not "tweedie". The link function for the "tweedie" family must be specified through linkPower.
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        linkPower: DoubleParam
      
      
      
Param for the index in the power link function.
Param for the index in the power link function. Only applicable to the Tweedie family. Note that link power 0, 1, -1 or 0.5 corresponds to the Log, Identity, Inverse or Sqrt link, respectively. When not set, this value defaults to 1 - variancePower, which matches the R "statmod" package.
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        linkPredictionCol: Param[String]
      
      
      
Param for link prediction (linear predictor) column name.
Param for link prediction (linear predictor) column name. Default is not set, which means we do not output link prediction.
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxIter: IntParam
      
      
      
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
 - HasMaxIter
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        offsetCol: Param[String]
      
      
      
Param for offset column name.
Param for offset column name. If this is not set or empty, we treat all instance offsets as 0.0. The feature specified as offset has a constant coefficient of 1.0.
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
 - Params
 - Note
 Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        predictionCol: Param[String]
      
      
      
Param for prediction column name.
Param for prediction column name.
- Definition Classes
 - HasPredictionCol
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        regParam: DoubleParam
      
      
      
Param for regularization parameter (>= 0).
Param for regularization parameter (>= 0).
- Definition Classes
 - HasRegParam
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      
Saves this ML instance to the input path, a shortcut of
write.save(path).Saves this ML instance to the input path, a shortcut of
write.save(path).- Definition Classes
 - MLWritable
 - Annotations
 - @Since( "1.6.0" ) @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): GeneralizedLinearRegression.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): GeneralizedLinearRegression.this.type
      
      
      
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): GeneralizedLinearRegression.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setAggregationDepth(value: Int): GeneralizedLinearRegression.this.type
      
      
      
- Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): GeneralizedLinearRegression.this.type
      
      
      
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
 a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): GeneralizedLinearRegression.this.type
      
      
      
Sets a default value for a param.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setFamily(value: String): GeneralizedLinearRegression.this.type
      
      
      
Sets the value of param family.
Sets the value of param family. Default is "gaussian".
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setFeaturesCol(value: String): GeneralizedLinearRegression
      
      
      
- Definition Classes
 - Predictor
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setFitIntercept(value: Boolean): GeneralizedLinearRegression.this.type
      
      
      
Sets if we should fit the intercept.
Sets if we should fit the intercept. Default is true.
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setLabelCol(value: String): GeneralizedLinearRegression
      
      
      
- Definition Classes
 - Predictor
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setLink(value: String): GeneralizedLinearRegression.this.type
      
      
      
Sets the value of param link.
Sets the value of param link. Used only when family is not "tweedie".
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setLinkPower(value: Double): GeneralizedLinearRegression.this.type
      
      
      
Sets the value of param linkPower.
Sets the value of param linkPower. Used only when family is "tweedie".
- Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setLinkPredictionCol(value: String): GeneralizedLinearRegression.this.type
      
      
      
Sets the link prediction (linear predictor) column name.
Sets the link prediction (linear predictor) column name.
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setMaxIter(value: Int): GeneralizedLinearRegression.this.type
      
      
      
Sets the maximum number of iterations (applicable for solver "irls").
Sets the maximum number of iterations (applicable for solver "irls"). Default is 25.
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setOffsetCol(value: String): GeneralizedLinearRegression.this.type
      
      
      
Sets the value of param offsetCol.
Sets the value of param offsetCol. If this is not set or empty, we treat all instance offsets as 0.0. Default is not set, so all instances have offset 0.0.
- Annotations
 - @Since( "2.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setPredictionCol(value: String): GeneralizedLinearRegression
      
      
      
- Definition Classes
 - Predictor
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setRegParam(value: Double): GeneralizedLinearRegression.this.type
      
      
      
Sets the regularization parameter for L2 regularization.
Sets the regularization parameter for L2 regularization. The regularization term is
$$ 0.5 * regParam * L2norm(coefficients)^2 $$
Default is 0.0.- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setSolver(value: String): GeneralizedLinearRegression.this.type
      
      
      
Sets the solver algorithm used for optimization.
Sets the solver algorithm used for optimization. Currently only supports "irls" which is also the default solver.
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setTol(value: Double): GeneralizedLinearRegression.this.type
      
      
      
Sets the convergence tolerance of iterations.
Sets the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6.
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setVariancePower(value: Double): GeneralizedLinearRegression.this.type
      
      
      
Sets the value of param variancePower.
Sets the value of param variancePower. Used only when family is "tweedie". Default is 0.0, which corresponds to the "gaussian" family.
- Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setWeightCol(value: String): GeneralizedLinearRegression.this.type
      
      
      
Sets the value of param weightCol.
Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one. In the Binomial family, weights correspond to number of trials and should be integer. Non-integer weights are rounded to integer in AIC calculation.
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        solver: Param[String]
      
      
      
The solver algorithm for optimization.
The solver algorithm for optimization. Supported options: "irls" (iteratively reweighted least squares). Default: "irls"
- Definition Classes
 - GeneralizedLinearRegressionBase → HasSolver
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - Identifiable → AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        tol: DoubleParam
      
      
      
Param for the convergence tolerance for iterative algorithms (>= 0).
Param for the convergence tolerance for iterative algorithms (>= 0).
- Definition Classes
 - HasTol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        train(dataset: Dataset[_]): GeneralizedLinearRegressionModel
      
      
      
Train a model using the given dataset and parameters.
Train a model using the given dataset and parameters. Developers can implement this instead of
fit()to avoid dealing with schema validation and copying parameters into the model.- dataset
 Training dataset
- returns
 Fitted model
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearRegression → Predictor
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
 - Predictor → PipelineStage
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
 - protected
 - Definition Classes
 - PipelineStage
 - Annotations
 - @DeveloperApi()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
 - GeneralizedLinearRegression → Identifiable
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
      
      
      
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
- schema
 input schema
- fitting
 whether this is in fitting
- featuresDataType
 SQL DataType for FeaturesType. E.g.,
VectorUDTfor vector features.- returns
 output schema
- Definition Classes
 - GeneralizedLinearRegressionBase → PredictorParams
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        variancePower: DoubleParam
      
      
      
Param for the power in the variance function of the Tweedie distribution which provides the relationship between the variance and mean of the distribution.
Param for the power in the variance function of the Tweedie distribution which provides the relationship between the variance and mean of the distribution. Only applicable to the Tweedie family. (see Tweedie Distribution (Wikipedia)) Supported values: 0 and [1, Inf). Note that variance power 0, 1, or 2 corresponds to the Gaussian, Poisson or Gamma family, respectively.
- Definition Classes
 - GeneralizedLinearRegressionBase
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        weightCol: Param[String]
      
      
      
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
 - HasWeightCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      
Returns an
MLWriterinstance for this ML instance.Returns an
MLWriterinstance for this ML instance.- Definition Classes
 - DefaultParamsWritable → MLWritable
 
 
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from GeneralizedLinearRegressionBase
Inherited from HasAggregationDepth
Inherited from HasSolver
Inherited from HasWeightCol
Inherited from HasRegParam
Inherited from HasTol
Inherited from HasMaxIter
Inherited from HasFitIntercept
Inherited from Regressor[Vector, GeneralizedLinearRegression, GeneralizedLinearRegressionModel]
Inherited from Predictor[Vector, GeneralizedLinearRegression, GeneralizedLinearRegressionModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[GeneralizedLinearRegressionModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.