sealed trait MultilayerPerceptronClassificationTrainingSummary extends MultilayerPerceptronClassificationSummary with TrainingSummary
Abstraction for MultilayerPerceptronClassification training results.
- Alphabetic
 - By Inheritance
 
- MultilayerPerceptronClassificationTrainingSummary
 - TrainingSummary
 - MultilayerPerceptronClassificationSummary
 - ClassificationSummary
 - Serializable
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Abstract Value Members
- 
      
      
      
        
      
    
      
        abstract 
        def
      
      
        labelCol: String
      
      
      
Field in "predictions" which gives the true label of each instance (if available).
Field in "predictions" which gives the true label of each instance (if available).
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        abstract 
        def
      
      
        objectiveHistory: Array[Double]
      
      
      
objective function (scaled loss + regularization) at each iteration.
objective function (scaled loss + regularization) at each iteration. It contains one more element, the initial state, than number of iterations.
- Definition Classes
 - TrainingSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        abstract 
        def
      
      
        predictionCol: String
      
      
      
Field in "predictions" which gives the prediction of each class.
Field in "predictions" which gives the prediction of each class.
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        abstract 
        def
      
      
        predictions: DataFrame
      
      
      
Dataframe output by the model's
transformmethod.Dataframe output by the model's
transformmethod.- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        abstract 
        def
      
      
        weightCol: String
      
      
      
Field in "predictions" which gives the weight of each instance.
Field in "predictions" which gives the weight of each instance.
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 
Concrete Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        accuracy: Double
      
      
      
Returns accuracy.
Returns accuracy. (equals to the total number of correctly classified instances out of the total number of instances.)
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fMeasureByLabel: Array[Double]
      
      
      
Returns f1-measure for each label (category).
Returns f1-measure for each label (category).
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fMeasureByLabel(beta: Double): Array[Double]
      
      
      
Returns f-measure for each label (category).
Returns f-measure for each label (category).
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        falsePositiveRateByLabel: Array[Double]
      
      
      
Returns false positive rate for each label (category).
Returns false positive rate for each label (category).
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        labels: Array[Double]
      
      
      
Returns the sequence of labels in ascending order.
Returns the sequence of labels in ascending order. This order matches the order used in metrics which are specified as arrays over labels, e.g., truePositiveRateByLabel.
Note: In most cases, it will be values {0.0, 1.0, ..., numClasses-1}, However, if the training set is missing a label, then all of the arrays over labels (e.g., from truePositiveRateByLabel) will be of length numClasses-1 instead of the expected numClasses.
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        precisionByLabel: Array[Double]
      
      
      
Returns precision for each label (category).
Returns precision for each label (category).
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        recallByLabel: Array[Double]
      
      
      
Returns recall for each label (category).
Returns recall for each label (category).
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        totalIterations: Int
      
      
      
Number of training iterations.
Number of training iterations.
- Definition Classes
 - TrainingSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        truePositiveRateByLabel: Array[Double]
      
      
      
Returns true positive rate for each label (category).
Returns true positive rate for each label (category).
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        weightedFMeasure: Double
      
      
      
Returns weighted averaged f1-measure.
Returns weighted averaged f1-measure.
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        weightedFMeasure(beta: Double): Double
      
      
      
Returns weighted averaged f-measure.
Returns weighted averaged f-measure.
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        weightedFalsePositiveRate: Double
      
      
      
Returns weighted false positive rate.
Returns weighted false positive rate.
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        weightedPrecision: Double
      
      
      
Returns weighted averaged precision.
Returns weighted averaged precision.
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        weightedRecall: Double
      
      
      
Returns weighted averaged recall.
Returns weighted averaged recall. (equals to precision, recall and f-measure)
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        weightedTruePositiveRate: Double
      
      
      
Returns weighted true positive rate.
Returns weighted true positive rate. (equals to precision, recall and f-measure)
- Definition Classes
 - ClassificationSummary
 - Annotations
 - @Since( "3.1.0" )