org.apache.spark.ml.classification
LogisticRegressionModel 
            Companion object LogisticRegressionModel
          
      class LogisticRegressionModel extends ProbabilisticClassificationModel[Vector, LogisticRegressionModel] with MLWritable with LogisticRegressionParams with HasTrainingSummary[LogisticRegressionTrainingSummary]
Model produced by LogisticRegression.
- Annotations
 - @Since( "1.4.0" )
 - Source
 - LogisticRegression.scala
 
- Grouped
 - Alphabetic
 - By Inheritance
 
- LogisticRegressionModel
 - HasTrainingSummary
 - LogisticRegressionParams
 - HasMaxBlockSizeInMB
 - HasAggregationDepth
 - HasThreshold
 - HasWeightCol
 - HasStandardization
 - HasTol
 - HasFitIntercept
 - HasMaxIter
 - HasElasticNetParam
 - HasRegParam
 - MLWritable
 - ProbabilisticClassificationModel
 - ProbabilisticClassifierParams
 - HasThresholds
 - HasProbabilityCol
 - ClassificationModel
 - ClassifierParams
 - HasRawPredictionCol
 - PredictionModel
 - PredictorParams
 - HasPredictionCol
 - HasFeaturesCol
 - HasLabelCol
 - Model
 - Transformer
 - PipelineStage
 - Logging
 - Params
 - Serializable
 - Serializable
 - Identifiable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      
An alias for
getOrDefault().An alias for
getOrDefault().- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        aggregationDepth: IntParam
      
      
      
Param for suggested depth for treeAggregate (>= 2).
Param for suggested depth for treeAggregate (>= 2).
- Definition Classes
 - HasAggregationDepth
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        binarySummary: BinaryLogisticRegressionTrainingSummary
      
      
      
Gets summary of model on training set.
Gets summary of model on training set. An exception is thrown if
hasSummaryis false or it is a multiclass model.- Annotations
 - @Since( "2.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        checkThresholdConsistency(): Unit
      
      
      
If
thresholdandthresholdsare both set, ensures they are consistent.If
thresholdandthresholdsare both set, ensures they are consistent.- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionParams
 - Exceptions thrown
 IllegalArgumentExceptionifthresholdandthresholdsare not equivalent
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): LogisticRegressionModel.this.type
      
      
      
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        coefficientMatrix: Matrix
      
      
      
- Annotations
 - @Since( "2.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        coefficients: Vector
      
      
      
A vector of model coefficients for "binomial" logistic regression.
A vector of model coefficients for "binomial" logistic regression. If this model was trained using the "multinomial" family then an exception is thrown.
- returns
 Vector
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): LogisticRegressionModel
      
      
      
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy().- Definition Classes
 - LogisticRegressionModel → Model → Transformer → PipelineStage → Params
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
      
      
      
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
 the target instance, which should work with the same set of default Params as this source instance
- extra
 extra params to be copied to the target's
paramMap- returns
 the target instance with param values copied
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        elasticNetParam: DoubleParam
      
      
      
Param for the ElasticNet mixing parameter, in range [0, 1].
Param for the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.
- Definition Classes
 - HasElasticNetParam
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        evaluate(dataset: Dataset[_]): LogisticRegressionSummary
      
      
      
Evaluates the model on a test dataset.
Evaluates the model on a test dataset.
- dataset
 Test dataset to evaluate model on.
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      
Explains a param.
Explains a param.
- param
 input param, must belong to this instance.
- returns
 a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      
Explains all params of this instance.
Explains all params of this instance. See
explainParam().- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      
extractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        family: Param[String]
      
      
      
Param for the name of family which is a description of the label distribution to be used in the model.
Param for the name of family which is a description of the label distribution to be used in the model. Supported options:
- "auto": Automatically select the family based on the number of classes: If numClasses == 1 || numClasses == 2, set to "binomial". Else, set to "multinomial"
 - "binomial": Binary logistic regression with pivoting.
 - "multinomial": Multinomial logistic (softmax) regression without pivoting. Default is "auto".
 
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        featuresCol: Param[String]
      
      
      
Param for features column name.
Param for features column name.
- Definition Classes
 - HasFeaturesCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        featuresDataType: DataType
      
      
      
Returns the SQL DataType corresponding to the FeaturesType type parameter.
Returns the SQL DataType corresponding to the FeaturesType type parameter.
This is used by
validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.
- Attributes
 - protected
 - Definition Classes
 - PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        fitIntercept: BooleanParam
      
      
      
Param for whether to fit an intercept term.
Param for whether to fit an intercept term.
- Definition Classes
 - HasFitIntercept
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getAggregationDepth: Int
      
      
      
- Definition Classes
 - HasAggregationDepth
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getElasticNetParam: Double
      
      
      
- Definition Classes
 - HasElasticNetParam
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getFamily: String
      
      
      
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getFeaturesCol: String
      
      
      
- Definition Classes
 - HasFeaturesCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getFitIntercept: Boolean
      
      
      
- Definition Classes
 - HasFitIntercept
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getLabelCol: String
      
      
      
- Definition Classes
 - HasLabelCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getLowerBoundsOnCoefficients: Matrix
      
      
      
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getLowerBoundsOnIntercepts: Vector
      
      
      
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxBlockSizeInMB: Double
      
      
      
- Definition Classes
 - HasMaxBlockSizeInMB
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxIter: Int
      
      
      
- Definition Classes
 - HasMaxIter
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      
Gets a param by its name.
Gets a param by its name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getPredictionCol: String
      
      
      
- Definition Classes
 - HasPredictionCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getProbabilityCol: String
      
      
      
- Definition Classes
 - HasProbabilityCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getRawPredictionCol: String
      
      
      
- Definition Classes
 - HasRawPredictionCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getRegParam: Double
      
      
      
- Definition Classes
 - HasRegParam
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getStandardization: Boolean
      
      
      
- Definition Classes
 - HasStandardization
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getThreshold: Double
      
      
      
Get threshold for binary classification.
Get threshold for binary classification.
If
thresholdsis set with length 2 (i.e., binary classification), this returns the equivalent threshold:1 / (1 + thresholds(0) / thresholds(1))
. Otherwise, returns
thresholdif set, or its default value if unset.1 / (1 + thresholds(0) / thresholds(1)) }}} Otherwise, returns
thresholdif set, or its default value if unset.- Definition Classes
 - LogisticRegressionModel → LogisticRegressionParams → HasThreshold
 - Annotations
 - @Since( "1.5.0" )
 - Exceptions thrown
 IllegalArgumentExceptionifthresholdsis set to an array of length other than 2.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getThresholds: Array[Double]
      
      
      
Get thresholds for binary or multiclass classification.
Get thresholds for binary or multiclass classification.
If
thresholdsis set, return its value. Otherwise, ifthresholdis set, return the equivalent thresholds for binary classification: (1-threshold, threshold). If neither are set, throw an exception.- Definition Classes
 - LogisticRegressionModel → LogisticRegressionParams → HasThresholds
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getTol: Double
      
      
      
- Definition Classes
 - HasTol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getUpperBoundsOnCoefficients: Matrix
      
      
      
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getUpperBoundsOnIntercepts: Vector
      
      
      
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getWeightCol: String
      
      
      
- Definition Classes
 - HasWeightCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      
Indicates whether this Model has a corresponding parent.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasSummary: Boolean
      
      
      
Indicates whether a training summary exists for this model instance.
Indicates whether a training summary exists for this model instance.
- Definition Classes
 - HasTrainingSummary
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        intercept: Double
      
      
      
The model intercept for "binomial" logistic regression.
The model intercept for "binomial" logistic regression. If this model was fit with the "multinomial" family then an exception is thrown.
- returns
 Double
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        interceptVector: Vector
      
      
      
- Annotations
 - @Since( "2.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        labelCol: Param[String]
      
      
      
Param for label column name.
Param for label column name.
- Definition Classes
 - HasLabelCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        lowerBoundsOnCoefficients: Param[Matrix]
      
      
      
The lower bounds on coefficients if fitting under bound constrained optimization.
The lower bounds on coefficients if fitting under bound constrained optimization. The bound matrix must be compatible with the shape (1, number of features) for binomial regression, or (number of classes, number of features) for multinomial regression. Otherwise, it throws exception. Default is none.
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        lowerBoundsOnIntercepts: Param[Vector]
      
      
      
The lower bounds on intercepts if fitting under bound constrained optimization.
The lower bounds on intercepts if fitting under bound constrained optimization. The bounds vector size must be equal to 1 for binomial regression, or the number of classes for multinomial regression. Otherwise, it throws exception. Default is none.
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxBlockSizeInMB: DoubleParam
      
      
      
Param for Maximum memory in MB for stacking input data into blocks.
Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..
- Definition Classes
 - HasMaxBlockSizeInMB
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxIter: IntParam
      
      
      
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
 - HasMaxIter
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        numClasses: Int
      
      
      
Number of classes (values which the label can take).
Number of classes (values which the label can take).
- Definition Classes
 - LogisticRegressionModel → ClassificationModel
 - Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        numFeatures: Int
      
      
      
Returns the number of features the model was trained on.
Returns the number of features the model was trained on. If unknown, returns -1
- Definition Classes
 - LogisticRegressionModel → PredictionModel
 - Annotations
 - @Since( "1.6.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
 - Params
 - Note
 Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
 - 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[LogisticRegressionModel]
      
      
      
The parent estimator that produced this model.
The parent estimator that produced this model.
- Definition Classes
 - Model
 - Note
 For ensembles' component Models, this value can be null.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(features: Vector): Double
      
      
      
Predict label for the given feature vector.
Predict label for the given feature vector. The behavior of this can be adjusted using
thresholds.- Definition Classes
 - LogisticRegressionModel → ClassificationModel → PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictProbability(features: Vector): Vector
      
      
      
Predict the probability of each class given the features.
Predict the probability of each class given the features. These predictions are also called class conditional probabilities.
This internal method is used to implement
transform()and output probabilityCol.- returns
 Estimated class conditional probabilities
- Definition Classes
 - ProbabilisticClassificationModel
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictRaw(features: Vector): Vector
      
      
      
Raw prediction for each possible label.
Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement
transform()and output rawPredictionCol.- returns
 vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
- Definition Classes
 - LogisticRegressionModel → ClassificationModel
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        predictionCol: Param[String]
      
      
      
Param for prediction column name.
Param for prediction column name.
- Definition Classes
 - HasPredictionCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        probability2prediction(probability: Vector): Double
      
      
      
Given a vector of class conditional probabilities, select the predicted label.
Given a vector of class conditional probabilities, select the predicted label. This supports thresholds which favor particular labels.
- returns
 predicted label
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionModel → ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        probabilityCol: Param[String]
      
      
      
Param for Column name for predicted class conditional probabilities.
Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.
- Definition Classes
 - HasProbabilityCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        raw2prediction(rawPrediction: Vector): Double
      
      
      
Given a vector of raw predictions, select the predicted label.
Given a vector of raw predictions, select the predicted label. This may be overridden to support thresholds which favor particular labels.
- returns
 predicted label
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionModel → ProbabilisticClassificationModel → ClassificationModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        raw2probability(rawPrediction: Vector): Vector
      
      
      
Non-in-place version of
raw2probabilityInPlace()Non-in-place version of
raw2probabilityInPlace()- Attributes
 - protected
 - Definition Classes
 - ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        raw2probabilityInPlace(rawPrediction: Vector): Vector
      
      
      
Estimate the probability of each class given the raw prediction, doing the computation in-place.
Estimate the probability of each class given the raw prediction, doing the computation in-place. These predictions are also called class conditional probabilities.
This internal method is used to implement
transform()and output probabilityCol.- returns
 Estimated class conditional probabilities (modified input vector)
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionModel → ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        rawPredictionCol: Param[String]
      
      
      
Param for raw prediction (a.k.a.
Param for raw prediction (a.k.a. confidence) column name.
- Definition Classes
 - HasRawPredictionCol
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        regParam: DoubleParam
      
      
      
Param for regularization parameter (>= 0).
Param for regularization parameter (>= 0).
- Definition Classes
 - HasRegParam
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      
Saves this ML instance to the input path, a shortcut of
write.save(path).Saves this ML instance to the input path, a shortcut of
write.save(path).- Definition Classes
 - MLWritable
 - Annotations
 - @Since( "1.6.0" ) @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): LogisticRegressionModel.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): LogisticRegressionModel.this.type
      
      
      
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): LogisticRegressionModel.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): LogisticRegressionModel.this.type
      
      
      
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
 a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): LogisticRegressionModel.this.type
      
      
      
Sets a default value for a param.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setFeaturesCol(value: String): LogisticRegressionModel
      
      
      
- Definition Classes
 - PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[LogisticRegressionModel]): LogisticRegressionModel
      
      
      
Sets the parent of this model (Java API).
Sets the parent of this model (Java API).
- Definition Classes
 - Model
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setPredictionCol(value: String): LogisticRegressionModel
      
      
      
- Definition Classes
 - PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setProbabilityCol(value: String): LogisticRegressionModel
      
      
      
- Definition Classes
 - ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setRawPredictionCol(value: String): LogisticRegressionModel
      
      
      
- Definition Classes
 - ClassificationModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setThreshold(value: Double): LogisticRegressionModel.this.type
      
      
      
Set threshold in binary classification, in range [0, 1].
Set threshold in binary classification, in range [0, 1].
If the estimated probability of class label 1 is greater than threshold, then predict 1, else 0. A high threshold encourages the model to predict 0 more often; a low threshold encourages the model to predict 1 more often.
Note: Calling this with threshold p is equivalent to calling
setThresholds(Array(1-p, p)). WhensetThreshold()is called, any user-set value forthresholdswill be cleared. If boththresholdandthresholdsare set in a ParamMap, then they must be equivalent.Default is 0.5.
- Definition Classes
 - LogisticRegressionModel → LogisticRegressionParams
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setThresholds(value: Array[Double]): LogisticRegressionModel.this.type
      
      
      
Set thresholds in multiclass (or binary) classification to adjust the probability of predicting each class.
Set thresholds in multiclass (or binary) classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values greater than 0, excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.
Note: When
setThresholds()is called, any user-set value forthresholdwill be cleared. If boththresholdandthresholdsare set in a ParamMap, then they must be equivalent.- Definition Classes
 - LogisticRegressionModel → LogisticRegressionParams → ProbabilisticClassificationModel
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        standardization: BooleanParam
      
      
      
Param for whether to standardize the training features before fitting the model.
Param for whether to standardize the training features before fitting the model.
- Definition Classes
 - HasStandardization
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        summary: LogisticRegressionTrainingSummary
      
      
      
Gets summary of model on training set.
Gets summary of model on training set. An exception is thrown if
hasSummaryis false.- Definition Classes
 - LogisticRegressionModel → HasTrainingSummary
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        threshold: DoubleParam
      
      
      
Param for threshold in binary classification prediction, in range [0, 1].
Param for threshold in binary classification prediction, in range [0, 1].
- Definition Classes
 - HasThreshold
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        thresholds: DoubleArrayParam
      
      
      
Param for Thresholds in multi-class classification to adjust the probability of predicting each class.
Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.
- Definition Classes
 - HasThresholds
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - LogisticRegressionModel → Identifiable → AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        tol: DoubleParam
      
      
      
Param for the convergence tolerance for iterative algorithms (>= 0).
Param for the convergence tolerance for iterative algorithms (>= 0).
- Definition Classes
 - HasTol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      
Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:
Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:
- predicted labels as predictionCol of type 
Double - raw predictions (confidences) as rawPredictionCol of type 
Vector - probability of each class as probabilityCol of type 
Vector. 
- dataset
 input dataset
- returns
 transformed dataset
- Definition Classes
 - ProbabilisticClassificationModel → ClassificationModel → PredictionModel → Transformer
 
 - predicted labels as predictionCol of type 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
 input dataset
- paramMap
 additional parameters, overwrite embedded params
- returns
 transformed dataset
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
 input dataset
- firstParamPair
 the first param pair, overwrite embedded params
- otherParamPairs
 other param pairs, overwrite embedded params
- returns
 transformed dataset
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" ) @varargs()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformImpl(dataset: Dataset[_]): DataFrame
      
      
      
- Definition Classes
 - ClassificationModel → PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
 - ProbabilisticClassificationModel → ClassificationModel → PredictionModel → PipelineStage
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
 - protected
 - Definition Classes
 - PipelineStage
 - Annotations
 - @DeveloperApi()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
 - LogisticRegressionModel → Identifiable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        upperBoundsOnCoefficients: Param[Matrix]
      
      
      
The upper bounds on coefficients if fitting under bound constrained optimization.
The upper bounds on coefficients if fitting under bound constrained optimization. The bound matrix must be compatible with the shape (1, number of features) for binomial regression, or (number of classes, number of features) for multinomial regression. Otherwise, it throws exception. Default is none.
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        upperBoundsOnIntercepts: Param[Vector]
      
      
      
The upper bounds on intercepts if fitting under bound constrained optimization.
The upper bounds on intercepts if fitting under bound constrained optimization. The bound vector size must be equal to 1 for binomial regression, or the number of classes for multinomial regression. Otherwise, it throws exception. Default is none.
- Definition Classes
 - LogisticRegressionParams
 - Annotations
 - @Since( "2.2.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        usingBoundConstrainedOptimization: Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionParams
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
      
      
      
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
- schema
 input schema
- fitting
 whether this is in fitting
- featuresDataType
 SQL DataType for FeaturesType. E.g.,
VectorUDTfor vector features.- returns
 output schema
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionParams → ProbabilisticClassifierParams → ClassifierParams → PredictorParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        weightCol: Param[String]
      
      
      
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
 - HasWeightCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      
Returns a org.apache.spark.ml.util.MLWriter instance for this ML instance.
Returns a org.apache.spark.ml.util.MLWriter instance for this ML instance.
For LogisticRegressionModel, this does NOT currently save the training summary. An option to save summary may be added in the future.
This also does not save the parent currently.
- Definition Classes
 - LogisticRegressionModel → MLWritable
 - Annotations
 - @Since( "1.6.0" )
 
 
Inherited from HasTrainingSummary[LogisticRegressionTrainingSummary]
Inherited from LogisticRegressionParams
Inherited from HasMaxBlockSizeInMB
Inherited from HasAggregationDepth
Inherited from HasThreshold
Inherited from HasWeightCol
Inherited from HasStandardization
Inherited from HasTol
Inherited from HasFitIntercept
Inherited from HasMaxIter
Inherited from HasElasticNetParam
Inherited from HasRegParam
Inherited from MLWritable
Inherited from ProbabilisticClassificationModel[Vector, LogisticRegressionModel]
Inherited from ProbabilisticClassifierParams
Inherited from HasThresholds
Inherited from HasProbabilityCol
Inherited from ClassificationModel[Vector, LogisticRegressionModel]
Inherited from ClassifierParams
Inherited from HasRawPredictionCol
Inherited from PredictionModel[Vector, LogisticRegressionModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Model[LogisticRegressionModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.