org.apache.spark.ml.classification
DecisionTreeClassificationModel 
            Companion object DecisionTreeClassificationModel
          
      class DecisionTreeClassificationModel extends ProbabilisticClassificationModel[Vector, DecisionTreeClassificationModel] with DecisionTreeModel with DecisionTreeClassifierParams with MLWritable with Serializable
Decision tree model (http://en.wikipedia.org/wiki/Decision_tree_learning) for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features.
- Annotations
 - @Since( "1.4.0" )
 - Source
 - DecisionTreeClassifier.scala
 
- Grouped
 - Alphabetic
 - By Inheritance
 
- DecisionTreeClassificationModel
 - MLWritable
 - DecisionTreeClassifierParams
 - TreeClassifierParams
 - DecisionTreeParams
 - HasWeightCol
 - HasSeed
 - HasCheckpointInterval
 - DecisionTreeModel
 - ProbabilisticClassificationModel
 - ProbabilisticClassifierParams
 - HasThresholds
 - HasProbabilityCol
 - ClassificationModel
 - ClassifierParams
 - HasRawPredictionCol
 - PredictionModel
 - PredictorParams
 - HasPredictionCol
 - HasFeaturesCol
 - HasLabelCol
 - Model
 - Transformer
 - PipelineStage
 - Logging
 - Params
 - Serializable
 - Serializable
 - Identifiable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      
An alias for
getOrDefault().An alias for
getOrDefault().- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        cacheNodeIds: BooleanParam
      
      
      
If false, the algorithm will pass trees to executors to match instances with nodes.
If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        checkpointInterval: IntParam
      
      
      
Param for set checkpoint interval (>= 1) or disable checkpoint (-1).
Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.
- Definition Classes
 - HasCheckpointInterval
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): DecisionTreeClassificationModel.this.type
      
      
      
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): DecisionTreeClassificationModel
      
      
      
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy().- Definition Classes
 - DecisionTreeClassificationModel → Model → Transformer → PipelineStage → Params
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
      
      
      
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
 the target instance, which should work with the same set of default Params as this source instance
- extra
 extra params to be copied to the target's
paramMap- returns
 the target instance with param values copied
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        depth: Int
      
      
      
Depth of the tree.
Depth of the tree. E.g.: Depth 0 means 1 leaf node. Depth 1 means 1 internal node and 2 leaf nodes.
- Definition Classes
 - DecisionTreeModel
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      
Explains a param.
Explains a param.
- param
 input param, must belong to this instance.
- returns
 a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      
Explains all params of this instance.
Explains all params of this instance. See
explainParam().- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      
extractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        featureImportances: Vector
      
      
      
Estimate of the importance of each feature.
Estimate of the importance of each feature.
This generalizes the idea of "Gini" importance to other losses, following the explanation of Gini importance from "Random Forests" documentation by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn.
This feature importance is calculated as follows:
- importance(feature j) = sum (over nodes which split on feature j) of the gain, where gain is scaled by the number of instances passing through node
 - Normalize importances for tree to sum to 1.
 
- Annotations
 - @Since( "2.0.0" )
 - Note
 Feature importance for single decision trees can have high variance due to correlated predictor variables. Consider using a RandomForestClassifier to determine feature importance instead.
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        featuresCol: Param[String]
      
      
      
Param for features column name.
Param for features column name.
- Definition Classes
 - HasFeaturesCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        featuresDataType: DataType
      
      
      
Returns the SQL DataType corresponding to the FeaturesType type parameter.
Returns the SQL DataType corresponding to the FeaturesType type parameter.
This is used by
validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.
- Attributes
 - protected
 - Definition Classes
 - PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getCacheNodeIds: Boolean
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getCheckpointInterval: Int
      
      
      
- Definition Classes
 - HasCheckpointInterval
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getFeaturesCol: String
      
      
      
- Definition Classes
 - HasFeaturesCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getImpurity: String
      
      
      
- Definition Classes
 - TreeClassifierParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getLabelCol: String
      
      
      
- Definition Classes
 - HasLabelCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getLeafCol: String
      
      
      
- Definition Classes
 - DecisionTreeParams
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxBins: Int
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxDepth: Int
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMaxMemoryInMB: Int
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinInfoGain: Double
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinInstancesPerNode: Int
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getMinWeightFractionPerNode: Double
      
      
      
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      
Gets a param by its name.
Gets a param by its name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getPredictionCol: String
      
      
      
- Definition Classes
 - HasPredictionCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getProbabilityCol: String
      
      
      
- Definition Classes
 - HasProbabilityCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getRawPredictionCol: String
      
      
      
- Definition Classes
 - HasRawPredictionCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getSeed: Long
      
      
      
- Definition Classes
 - HasSeed
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getThresholds: Array[Double]
      
      
      
- Definition Classes
 - HasThresholds
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getWeightCol: String
      
      
      
- Definition Classes
 - HasWeightCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      
Indicates whether this Model has a corresponding parent.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        impurity: Param[String]
      
      
      
Criterion used for information gain calculation (case-insensitive).
Criterion used for information gain calculation (case-insensitive). This impurity type is used in DecisionTreeClassifier and RandomForestClassifier, Supported: "entropy" and "gini". (default = gini)
- Definition Classes
 - TreeClassifierParams
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        labelCol: Param[String]
      
      
      
Param for label column name.
Param for label column name.
- Definition Classes
 - HasLabelCol
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        leafCol: Param[String]
      
      
      
Leaf indices column name.
Leaf indices column name. Predicted leaf index of each instance in each tree by preorder. (default = "")
- Definition Classes
 - DecisionTreeParams
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxBins: IntParam
      
      
      
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxDepth: IntParam
      
      
      
Maximum depth of the tree (nonnegative).
Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        maxMemoryInMB: IntParam
      
      
      
Maximum memory in MB allocated to histogram aggregation.
Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        minInfoGain: DoubleParam
      
      
      
Minimum information gain for a split to be considered at a tree node.
Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        minInstancesPerNode: IntParam
      
      
      
Minimum number of instances each child must have after split.
Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        minWeightFractionPerNode: DoubleParam
      
      
      
Minimum fraction of the weighted sample count that each child must have after split.
Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in the interval [0.0, 0.5). (default = 0.0)
- Definition Classes
 - DecisionTreeParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        numClasses: Int
      
      
      
Number of classes (values which the label can take).
Number of classes (values which the label can take).
- Definition Classes
 - DecisionTreeClassificationModel → ClassificationModel
 - Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        numFeatures: Int
      
      
      
Returns the number of features the model was trained on.
Returns the number of features the model was trained on. If unknown, returns -1
- Definition Classes
 - DecisionTreeClassificationModel → PredictionModel
 - Annotations
 - @Since( "1.6.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        numNodes: Int
      
      
      
Number of nodes in tree, including leaf nodes.
Number of nodes in tree, including leaf nodes.
- Definition Classes
 - DecisionTreeModel
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
 - Params
 - Note
 Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
 - 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[DecisionTreeClassificationModel]
      
      
      
The parent estimator that produced this model.
The parent estimator that produced this model.
- Definition Classes
 - Model
 - Note
 For ensembles' component Models, this value can be null.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(features: Vector): Double
      
      
      
Predict label for the given features.
Predict label for the given features. This method is used to implement
transform()and output predictionCol.This default implementation for classification predicts the index of the maximum value from
predictRaw().- Definition Classes
 - DecisionTreeClassificationModel → ClassificationModel → PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictLeaf(features: Vector): Double
      
      
      
- returns
 The index of the leaf corresponding to the feature vector. Leaves are indexed in pre-order from 0.
- Definition Classes
 - DecisionTreeModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictProbability(features: Vector): Vector
      
      
      
Predict the probability of each class given the features.
Predict the probability of each class given the features. These predictions are also called class conditional probabilities.
This internal method is used to implement
transform()and output probabilityCol.- returns
 Estimated class conditional probabilities
- Definition Classes
 - ProbabilisticClassificationModel
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictRaw(features: Vector): Vector
      
      
      
Raw prediction for each possible label.
Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement
transform()and output rawPredictionCol.- returns
 vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
- Definition Classes
 - DecisionTreeClassificationModel → ClassificationModel
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        predictionCol: Param[String]
      
      
      
Param for prediction column name.
Param for prediction column name.
- Definition Classes
 - HasPredictionCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        probability2prediction(probability: Vector): Double
      
      
      
Given a vector of class conditional probabilities, select the predicted label.
Given a vector of class conditional probabilities, select the predicted label. This supports thresholds which favor particular labels.
- returns
 predicted label
- Attributes
 - protected
 - Definition Classes
 - ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        probabilityCol: Param[String]
      
      
      
Param for Column name for predicted class conditional probabilities.
Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.
- Definition Classes
 - HasProbabilityCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        raw2prediction(rawPrediction: Vector): Double
      
      
      
Given a vector of raw predictions, select the predicted label.
Given a vector of raw predictions, select the predicted label. This may be overridden to support thresholds which favor particular labels.
- returns
 predicted label
- Attributes
 - protected
 - Definition Classes
 - ProbabilisticClassificationModel → ClassificationModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        raw2probability(rawPrediction: Vector): Vector
      
      
      
Non-in-place version of
raw2probabilityInPlace()Non-in-place version of
raw2probabilityInPlace()- Attributes
 - protected
 - Definition Classes
 - ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        raw2probabilityInPlace(rawPrediction: Vector): Vector
      
      
      
Estimate the probability of each class given the raw prediction, doing the computation in-place.
Estimate the probability of each class given the raw prediction, doing the computation in-place. These predictions are also called class conditional probabilities.
This internal method is used to implement
transform()and output probabilityCol.- returns
 Estimated class conditional probabilities (modified input vector)
- Attributes
 - protected
 - Definition Classes
 - DecisionTreeClassificationModel → ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        rawPredictionCol: Param[String]
      
      
      
Param for raw prediction (a.k.a.
Param for raw prediction (a.k.a. confidence) column name.
- Definition Classes
 - HasRawPredictionCol
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        rootNode: Node
      
      
      
Root of the decision tree
Root of the decision tree
- Definition Classes
 - DecisionTreeClassificationModel → DecisionTreeModel
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      
Saves this ML instance to the input path, a shortcut of
write.save(path).Saves this ML instance to the input path, a shortcut of
write.save(path).- Definition Classes
 - MLWritable
 - Annotations
 - @Since( "1.6.0" ) @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        seed: LongParam
      
      
      
Param for random seed.
Param for random seed.
- Definition Classes
 - HasSeed
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): DecisionTreeClassificationModel.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): DecisionTreeClassificationModel.this.type
      
      
      
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): DecisionTreeClassificationModel.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): DecisionTreeClassificationModel.this.type
      
      
      
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
 a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): DecisionTreeClassificationModel.this.type
      
      
      
Sets a default value for a param.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setFeaturesCol(value: String): DecisionTreeClassificationModel
      
      
      
- Definition Classes
 - PredictionModel
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setLeafCol(value: String): DecisionTreeClassificationModel.this.type
      
      
      
- Definition Classes
 - DecisionTreeParams
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[DecisionTreeClassificationModel]): DecisionTreeClassificationModel
      
      
      
Sets the parent of this model (Java API).
Sets the parent of this model (Java API).
- Definition Classes
 - Model
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setPredictionCol(value: String): DecisionTreeClassificationModel
      
      
      
- Definition Classes
 - PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setProbabilityCol(value: String): DecisionTreeClassificationModel
      
      
      
- Definition Classes
 - ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setRawPredictionCol(value: String): DecisionTreeClassificationModel
      
      
      
- Definition Classes
 - ClassificationModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setThresholds(value: Array[Double]): DecisionTreeClassificationModel
      
      
      
- Definition Classes
 - ProbabilisticClassificationModel
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        thresholds: DoubleArrayParam
      
      
      
Param for Thresholds in multi-class classification to adjust the probability of predicting each class.
Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.
- Definition Classes
 - HasThresholds
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toDebugString: String
      
      
      
Full description of model
Full description of model
- Definition Classes
 - DecisionTreeModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
Summary of the model
Summary of the model
- Definition Classes
 - DecisionTreeClassificationModel → DecisionTreeModel → Identifiable → AnyRef → Any
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      
Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:
Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters:
- predicted labels as predictionCol of type 
Double - raw predictions (confidences) as rawPredictionCol of type 
Vector - probability of each class as probabilityCol of type 
Vector. 
- dataset
 input dataset
- returns
 transformed dataset
- Definition Classes
 - DecisionTreeClassificationModel → ProbabilisticClassificationModel → ClassificationModel → PredictionModel → Transformer
 
 - predicted labels as predictionCol of type 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
 input dataset
- paramMap
 additional parameters, overwrite embedded params
- returns
 transformed dataset
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
 input dataset
- firstParamPair
 the first param pair, overwrite embedded params
- otherParamPairs
 other param pairs, overwrite embedded params
- returns
 transformed dataset
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" ) @varargs()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformImpl(dataset: Dataset[_]): DataFrame
      
      
      
- Definition Classes
 - ClassificationModel → PredictionModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
 - DecisionTreeClassificationModel → ProbabilisticClassificationModel → ClassificationModel → PredictionModel → PipelineStage
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
 - protected
 - Definition Classes
 - PipelineStage
 - Annotations
 - @DeveloperApi()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
 - DecisionTreeClassificationModel → Identifiable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
      
      
      
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
- schema
 input schema
- fitting
 whether this is in fitting
- featuresDataType
 SQL DataType for FeaturesType. E.g.,
VectorUDTfor vector features.- returns
 output schema
- Attributes
 - protected
 - Definition Classes
 - DecisionTreeClassifierParams → ProbabilisticClassifierParams → ClassifierParams → PredictorParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        weightCol: Param[String]
      
      
      
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
 - HasWeightCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      
Returns an
MLWriterinstance for this ML instance.Returns an
MLWriterinstance for this ML instance.- Definition Classes
 - DecisionTreeClassificationModel → MLWritable
 - Annotations
 - @Since( "2.0.0" )
 
 
Inherited from MLWritable
Inherited from DecisionTreeClassifierParams
Inherited from TreeClassifierParams
Inherited from DecisionTreeParams
Inherited from HasWeightCol
Inherited from HasSeed
Inherited from HasCheckpointInterval
Inherited from DecisionTreeModel
Inherited from ProbabilisticClassificationModel[Vector, DecisionTreeClassificationModel]
Inherited from ProbabilisticClassifierParams
Inherited from HasThresholds
Inherited from HasProbabilityCol
Inherited from ClassificationModel[Vector, DecisionTreeClassificationModel]
Inherited from ClassifierParams
Inherited from HasRawPredictionCol
Inherited from PredictionModel[Vector, DecisionTreeClassificationModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Model[DecisionTreeClassificationModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.