pyspark.pandas.window.ExponentialMoving.mean¶
- 
ExponentialMoving.mean() → FrameLike[source]¶
- Calculate an online exponentially weighted mean. - Returns
- Series or DataFrame
- Returned object type is determined by the caller of the exponentially calculation. 
 
 - See also - pyspark.pandas.Series.expanding
- Calling object with Series data. 
- pyspark.pandas.DataFrame.expanding
- Calling object with DataFrames. 
- pyspark.pandas.Series.mean
- Equivalent method for Series. 
- pyspark.pandas.DataFrame.mean
- Equivalent method for DataFrame. 
 - Notes - There are behavior differences between pandas-on-Spark and pandas. - the current implementation of this API uses Spark’s Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. 
 - Examples - The below examples will show computing exponentially weighted moving average. - >>> df = ps.DataFrame({'s1': [.2, .0, .6, .2, .4, .5, .6], 's2': [2, 1, 3, 1, 0, 0, 0]}) >>> df.ewm(com=0.1).mean() s1 s2 0 0.200000 2.000000 1 0.016667 1.083333 2 0.547368 2.827068 3 0.231557 1.165984 4 0.384688 0.105992 5 0.489517 0.009636 6 0.589956 0.000876 - >>> df.s2.ewm(halflife=1.5, min_periods=3).mean() 0 NaN 1 NaN 2 2.182572 3 1.663174 4 0.979949 5 0.593155 6 0.364668 Name: s2, dtype: float64