RegressionMetrics¶
- 
class pyspark.mllib.evaluation.RegressionMetrics(predictionAndObservations: pyspark.rdd.RDD[Tuple[float, float]])[source]¶
- Evaluator for regression. - New in version 1.4.0. - Parameters
- predictionAndObservationspyspark.RDD
- an RDD of prediction, observation and optional weight. 
 
- predictionAndObservations
 - Examples - >>> predictionAndObservations = sc.parallelize([ ... (2.5, 3.0), (0.0, -0.5), (2.0, 2.0), (8.0, 7.0)]) >>> metrics = RegressionMetrics(predictionAndObservations) >>> metrics.explainedVariance 8.859... >>> metrics.meanAbsoluteError 0.5... >>> metrics.meanSquaredError 0.37... >>> metrics.rootMeanSquaredError 0.61... >>> metrics.r2 0.94... >>> predictionAndObservationsWithOptWeight = sc.parallelize([ ... (2.5, 3.0, 0.5), (0.0, -0.5, 1.0), (2.0, 2.0, 0.3), (8.0, 7.0, 0.9)]) >>> metrics = RegressionMetrics(predictionAndObservationsWithOptWeight) >>> metrics.rootMeanSquaredError 0.68... - Methods - call(name, *a)- Call method of java_model - Attributes - Returns the explained variance regression score. - Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss. - Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss. - Returns R^2^, the coefficient of determination. - Returns the root mean squared error, which is defined as the square root of the mean squared error. - Methods Documentation - 
call(name: str, *a: Any) → Any¶
- Call method of java_model 
 - Attributes Documentation - 
explainedVariance¶
- Returns the explained variance regression score. explainedVariance = \(1 - \frac{variance(y - \hat{y})}{variance(y)}\) - New in version 1.4.0. 
 - 
meanAbsoluteError¶
- Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss. - New in version 1.4.0. 
 - 
meanSquaredError¶
- Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss. - New in version 1.4.0. 
 - 
r2¶
- Returns R^2^, the coefficient of determination. - New in version 1.4.0. 
 - 
rootMeanSquaredError¶
- Returns the root mean squared error, which is defined as the square root of the mean squared error. - New in version 1.4.0.