pyspark.pandas.DataFrame.from_dict¶
- 
static DataFrame.from_dict(data: Dict[Union[Any, Tuple[Any, …]], Sequence[Any]], orient: str = 'columns', dtype: Union[str, numpy.dtype, pandas.core.dtypes.base.ExtensionDtype] = None, columns: Optional[List[Union[Any, Tuple[Any, …]]]] = None) → pyspark.pandas.frame.DataFrame[source]¶
- Construct DataFrame from dict of array-like or dicts. - Creates DataFrame object from dictionary by columns or by index allowing dtype specification. - Parameters
- datadict
- Of the form {field : array-like} or {field : dict}. 
- orient{‘columns’, ‘index’}, default ‘columns’
- The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise, if the keys should be rows, pass ‘index’. 
- dtypedtype, default None
- Data type to force, otherwise infer. 
- columnslist, default None
- Column labels to use when - orient='index'. Raises a ValueError if used with- orient='columns'.
 
- Returns
- DataFrame
 
 - See also - DataFrame.from_records
- DataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame. 
- DataFrame
- DataFrame object creation using constructor. 
 - Examples - By default the keys of the dict become the DataFrame columns: - >>> data = {'col_1': [3, 2, 1, 0], 'col_2': [10, 20, 30, 40]} >>> ps.DataFrame.from_dict(data) col_1 col_2 0 3 10 1 2 20 2 1 30 3 0 40 - Specify - orient='index'to create the DataFrame using dictionary keys as rows:- >>> data = {'row_1': [3, 2, 1, 0], 'row_2': [10, 20, 30, 40]} >>> ps.DataFrame.from_dict(data, orient='index').sort_index() 0 1 2 3 row_1 3 2 1 0 row_2 10 20 30 40 - When using the ‘index’ orientation, the column names can be specified manually: - >>> ps.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']).sort_index() A B C D row_1 3 2 1 0 row_2 10 20 30 40