SVMModel¶
- 
class pyspark.mllib.classification.SVMModel(weights: pyspark.mllib.linalg.Vector, intercept: float)[source]¶
- Model for Support Vector Machines (SVMs). - New in version 0.9.0. - Parameters
- weightspyspark.mllib.linalg.Vector
- Weights computed for every feature. 
- interceptfloat
- Intercept computed for this model. 
 
- weights
 - Examples - >>> from pyspark.mllib.linalg import SparseVector >>> data = [ ... LabeledPoint(0.0, [0.0]), ... LabeledPoint(1.0, [1.0]), ... LabeledPoint(1.0, [2.0]), ... LabeledPoint(1.0, [3.0]) ... ] >>> svm = SVMWithSGD.train(sc.parallelize(data), iterations=10) >>> svm.predict([1.0]) 1 >>> svm.predict(sc.parallelize([[1.0]])).collect() [1] >>> svm.clearThreshold() >>> svm.predict(numpy.array([1.0])) 1.44... - >>> sparse_data = [ ... LabeledPoint(0.0, SparseVector(2, {0: -1.0})), ... LabeledPoint(1.0, SparseVector(2, {1: 1.0})), ... LabeledPoint(0.0, SparseVector(2, {0: 0.0})), ... LabeledPoint(1.0, SparseVector(2, {1: 2.0})) ... ] >>> svm = SVMWithSGD.train(sc.parallelize(sparse_data), iterations=10) >>> svm.predict(SparseVector(2, {1: 1.0})) 1 >>> svm.predict(SparseVector(2, {0: -1.0})) 0 >>> import os, tempfile >>> path = tempfile.mkdtemp() >>> svm.save(sc, path) >>> sameModel = SVMModel.load(sc, path) >>> sameModel.predict(SparseVector(2, {1: 1.0})) 1 >>> sameModel.predict(SparseVector(2, {0: -1.0})) 0 >>> from shutil import rmtree >>> try: ... rmtree(path) ... except BaseException: ... pass - Methods - Clears the threshold so that predict will output raw prediction scores. - load(sc, path)- Load a model from the given path. - predict(x)- Predict values for a single data point or an RDD of points using the model trained. - save(sc, path)- Save this model to the given path. - setThreshold(value)- Sets the threshold that separates positive predictions from negative predictions. - Attributes - Intercept computed for this model. - Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions. - Weights computed for every feature. - Methods Documentation - 
clearThreshold() → None¶
- Clears the threshold so that predict will output raw prediction scores. It is used for binary classification only. - New in version 1.4.0. 
 - 
classmethod load(sc: pyspark.context.SparkContext, path: str) → pyspark.mllib.classification.SVMModel[source]¶
- Load a model from the given path. - New in version 1.4.0. 
 - 
predict(x: Union[VectorLike, pyspark.rdd.RDD[VectorLike]]) → Union[pyspark.rdd.RDD[Union[int, float]], int, float][source]¶
- Predict values for a single data point or an RDD of points using the model trained. - New in version 0.9.0. 
 - 
save(sc: pyspark.context.SparkContext, path: str) → None[source]¶
- Save this model to the given path. - New in version 1.4.0. 
 - 
setThreshold(value: float) → None¶
- Sets the threshold that separates positive predictions from negative predictions. An example with prediction score greater than or equal to this threshold is identified as a positive, and negative otherwise. It is used for binary classification only. - New in version 1.4.0. 
 - Attributes Documentation - 
intercept¶
- Intercept computed for this model. - New in version 1.0.0. 
 - 
threshold¶
- Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions. It is used for binary classification only. - New in version 1.4.0. 
 - 
weights¶
- Weights computed for every feature. - New in version 1.0.0.