object KolmogorovSmirnovTest
Conduct the two-sided Kolmogorov Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution. For more information on KS Test:
- Annotations
 - @Since("2.4.0")
 - Source
 - KolmogorovSmirnovTest.scala
 - See also
 
- Alphabetic
 - By Inheritance
 
- KolmogorovSmirnovTest
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - Protected
 
Value Members
-   final  def !=(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def ##: Int
- Definition Classes
 - AnyRef → Any
 
 -   final  def ==(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def asInstanceOf[T0]: T0
- Definition Classes
 - Any
 
 -    def clone(): AnyRef
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
 -   final  def eq(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -    def equals(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def getClass(): Class[_ <: AnyRef]
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def hashCode(): Int
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def isInstanceOf[T0]: Boolean
- Definition Classes
 - Any
 
 -   final  def ne(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -   final  def notify(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def notifyAll(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def synchronized[T0](arg0: => T0): T0
- Definition Classes
 - AnyRef
 
 -    def test(dataset: Dataset[_], sampleCol: String, distName: String, params: Double*): DataFrame
Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality.
Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality. Currently supports the normal distribution, taking as parameters the mean and standard deviation.
- dataset
 A
Datasetor aDataFramecontaining the sample of data to test- sampleCol
 Name of sample column in dataset, of any numerical type
- distName
 a
Stringname for a theoretical distribution, currently only support "norm".- params
 Double*specifying the parameters to be used for the theoretical distribution. For "norm" distribution, the parameters includes mean and variance.- returns
 DataFrame containing the test result for the input sampled data. This DataFrame will contain a single Row with the following fields:
pValue: Doublestatistic: Double
- Annotations
 - @Since("2.4.0") @varargs()
 
 -    def test(dataset: Dataset[_], sampleCol: String, cdf: Function[Double, Double]): DataFrame
Java-friendly version of
test(dataset: DataFrame, sampleCol: String, cdf: Double => Double)Java-friendly version of
test(dataset: DataFrame, sampleCol: String, cdf: Double => Double)- Annotations
 - @Since("2.4.0")
 
 -    def test(dataset: Dataset[_], sampleCol: String, cdf: (Double) => Double): DataFrame
Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution.
Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution.
- dataset
 A
Datasetor aDataFramecontaining the sample of data to test- sampleCol
 Name of sample column in dataset, of any numerical type
- cdf
 a
Double => Doublefunction to calculate the theoretical CDF at a given value- returns
 DataFrame containing the test result for the input sampled data. This DataFrame will contain a single Row with the following fields:
pValue: Doublestatistic: Double
- Annotations
 - @Since("2.4.0")
 
 -    def toString(): String
- Definition Classes
 - AnyRef → Any
 
 -   final  def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -   final  def wait(arg0: Long): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException]) @native()
 
 -   final  def wait(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 
Deprecated Value Members
-    def finalize(): Unit
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.Throwable]) @Deprecated
 - Deprecated
 (Since version 9)