object ChiSquareTest
Chi-square hypothesis testing for categorical data.
See Wikipedia for more information on the Chi-squared test.
- Annotations
 - @Since("2.2.0")
 - Source
 - ChiSquareTest.scala
 
- Alphabetic
 - By Inheritance
 
- ChiSquareTest
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - Protected
 
Value Members
-   final  def !=(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def ##: Int
- Definition Classes
 - AnyRef → Any
 
 -   final  def ==(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def asInstanceOf[T0]: T0
- Definition Classes
 - Any
 
 -    def clone(): AnyRef
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
 -   final  def eq(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -    def equals(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def getClass(): Class[_ <: AnyRef]
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def hashCode(): Int
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def isInstanceOf[T0]: Boolean
- Definition Classes
 - Any
 
 -   final  def ne(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -   final  def notify(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def notifyAll(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def synchronized[T0](arg0: => T0): T0
- Definition Classes
 - AnyRef
 
 -    def test(dataset: DataFrame, featuresCol: String, labelCol: String, flatten: Boolean): DataFrame
- dataset
 DataFrame of categorical labels and categorical features. Real-valued features will be treated as categorical for each distinct value.
- featuresCol
 Name of features column in dataset, of type
Vector(VectorUDT)- labelCol
 Name of label column in dataset, of any numerical type
- flatten
 If false, the returned DataFrame contains only a single Row, otherwise, one row per feature.
- Annotations
 - @Since("3.1.0")
 
 -    def test(dataset: DataFrame, featuresCol: String, labelCol: String): DataFrame
Conduct Pearson's independence test for every feature against the label.
Conduct Pearson's independence test for every feature against the label. For each feature, the (feature, label) pairs are converted into a contingency matrix for which the Chi-squared statistic is computed. All label and feature values must be categorical.
The null hypothesis is that the occurrence of the outcomes is statistically independent.
- dataset
 DataFrame of categorical labels and categorical features. Real-valued features will be treated as categorical for each distinct value.
- featuresCol
 Name of features column in dataset, of type
Vector(VectorUDT)- labelCol
 Name of label column in dataset, of any numerical type
- returns
 DataFrame containing the test result for every feature against the label. This DataFrame will contain a single Row with the following fields:
pValues: VectordegreesOfFreedom: Array[Int]statistics: VectorEach of these fields has one value per feature.
- Annotations
 - @Since("2.2.0")
 
 -    def toString(): String
- Definition Classes
 - AnyRef → Any
 
 -   final  def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -   final  def wait(arg0: Long): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException]) @native()
 
 -   final  def wait(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 
Deprecated Value Members
-    def finalize(): Unit
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.Throwable]) @Deprecated
 - Deprecated
 (Since version 9)