Package org.apache.spark.ml.clustering
Class BisectingKMeans
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,BisectingKMeansParams,Params,HasDistanceMeasure,HasFeaturesCol,HasMaxIter,HasPredictionCol,HasSeed,HasWeightCol,DefaultParamsWritable,Identifiable,MLWritable
public class BisectingKMeans
extends Estimator<BisectingKMeansModel>
implements BisectingKMeansParams, DefaultParamsWritable
A bisecting k-means algorithm based on the paper "A comparison of document clustering techniques"
by Steinbach, Karypis, and Kumar, with modification to fit Spark.
The algorithm starts from a single cluster that contains all points.
Iteratively it finds divisible clusters on the bottom level and bisects each of them using
k-means, until there are
k leaf clusters in total or no leaf clusters are divisible.
The bisecting steps of clusters on the same level are grouped together to increase parallelism.
If bisecting all divisible clusters on the bottom level would result more than k leaf clusters,
larger clusters get higher priority.
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Param for The distance measure.Param for features column name.Fits a model to the input data.final IntParamk()The desired number of leaf clusters.static BisectingKMeansfinal IntParammaxIter()Param for maximum number of iterations (>= 0).final DoubleParamThe minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).Param for prediction column name.static MLReader<T>read()final LongParamseed()Param for random seed.setDistanceMeasure(String value) setFeaturesCol(String value) setK(int value) setMaxIter(int value) setMinDivisibleClusterSize(double value) setPredictionCol(String value) setSeed(long value) setWeightCol(String value) Sets the value of paramweightCol().transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Param for weight column name.Methods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.clustering.BisectingKMeansParams
getK, getMinDivisibleClusterSize, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.param.shared.HasDistanceMeasure
getDistanceMeasureMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightColMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
BisectingKMeans
-
BisectingKMeans
public BisectingKMeans()
-
-
Method Details
-
load
-
read
-
k
Description copied from interface:BisectingKMeansParamsThe desired number of leaf clusters. Must be > 1. Default: 4. The actual number could be smaller if there are no divisible leaf clusters.- Specified by:
kin interfaceBisectingKMeansParams- Returns:
- (undocumented)
-
minDivisibleClusterSize
Description copied from interface:BisectingKMeansParamsThe minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).- Specified by:
minDivisibleClusterSizein interfaceBisectingKMeansParams- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightColin interfaceHasWeightCol- Returns:
- (undocumented)
-
distanceMeasure
Description copied from interface:HasDistanceMeasureParam for The distance measure. Supported options: 'euclidean' and 'cosine'.- Specified by:
distanceMeasurein interfaceHasDistanceMeasure- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionColParam for prediction column name.- Specified by:
predictionColin interfaceHasPredictionCol- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
featuresCol
Description copied from interface:HasFeaturesColParam for features column name.- Specified by:
featuresColin interfaceHasFeaturesCol- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
maxIterin interfaceHasMaxIter- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classEstimator<BisectingKMeansModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
setFeaturesCol
-
setPredictionCol
-
setK
-
setMaxIter
-
setSeed
-
setMinDivisibleClusterSize
-
setDistanceMeasure
-
setWeightCol
Sets the value of paramweightCol(). If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
fit
Description copied from class:EstimatorFits a model to the input data.- Specified by:
fitin classEstimator<BisectingKMeansModel>- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-