Package org.apache.spark.ml.clustering
Class BisectingKMeansModel
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,BisectingKMeansParams,Params,HasDistanceMeasure,HasFeaturesCol,HasMaxIter,HasPredictionCol,HasSeed,HasWeightCol,HasTrainingSummary<BisectingKMeansSummary>,Identifiable,MLWritable
public class BisectingKMeansModel
extends Model<BisectingKMeansModel>
implements BisectingKMeansParams, MLWritable, HasTrainingSummary<BisectingKMeansSummary>
Model fitted by BisectingKMeans.
param: parentModel a model trained by BisectingKMeans.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Method Summary
Modifier and TypeMethodDescriptionVector[]doublecomputeCost(Dataset<?> dataset) Deprecated.This method is deprecated and will be removed in future versions.Creates a copy of this instance with the same UID and some extra params.Param for The distance measure.longParam for features column name.final IntParamk()The desired number of leaf clusters.static BisectingKMeansModelfinal IntParammaxIter()Param for maximum number of iterations (>= 0).final DoubleParamThe minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).intintParam for prediction column name.static MLReader<BisectingKMeansModel>read()final LongParamseed()Param for random seed.setFeaturesCol(String value) setPredictionCol(String value) summary()Gets summary of model on training set.toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Param for weight column name.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.clustering.BisectingKMeansParams
getK, getMinDivisibleClusterSize, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasDistanceMeasure
getDistanceMeasureMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionColMethods inherited from interface org.apache.spark.ml.util.HasTrainingSummary
hasSummary, loadSummary, setSummaryMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightColMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
read
-
load
-
k
Description copied from interface:BisectingKMeansParamsThe desired number of leaf clusters. Must be > 1. Default: 4. The actual number could be smaller if there are no divisible leaf clusters.- Specified by:
kin interfaceBisectingKMeansParams- Returns:
- (undocumented)
-
minDivisibleClusterSize
Description copied from interface:BisectingKMeansParamsThe minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).- Specified by:
minDivisibleClusterSizein interfaceBisectingKMeansParams- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightColin interfaceHasWeightCol- Returns:
- (undocumented)
-
distanceMeasure
Description copied from interface:HasDistanceMeasureParam for The distance measure. Supported options: 'euclidean' and 'cosine'.- Specified by:
distanceMeasurein interfaceHasDistanceMeasure- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionColParam for prediction column name.- Specified by:
predictionColin interfaceHasPredictionCol- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
featuresCol
Description copied from interface:HasFeaturesColParam for features column name.- Specified by:
featuresColin interfaceHasFeaturesCol- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
maxIterin interfaceHasMaxIter- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
numFeatures
public int numFeatures() -
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classModel<BisectingKMeansModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
setFeaturesCol
-
setPredictionCol
-
transform
Description copied from class:TransformerTransforms the input dataset.- Specified by:
transformin classTransformer- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
predict
-
clusterCenters
-
computeCost
Deprecated.This method is deprecated and will be removed in future versions. Use ClusteringEvaluator instead. You can also get the cost on the training dataset in the summary.Computes the sum of squared distances between the input points and their corresponding cluster centers.- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
writein interfaceMLWritable- Returns:
- (undocumented)
-
toString
- Specified by:
toStringin interfaceIdentifiable- Overrides:
toStringin classObject
-
summary
Gets summary of model on training set. An exception is thrown ifhasSummaryis false.- Specified by:
summaryin interfaceHasTrainingSummary<BisectingKMeansSummary>- Returns:
- (undocumented)
-
estimatedSize
public long estimatedSize()
-