class KMeansModel extends Saveable with Serializable with PMMLExportable
A clustering model for K-means. Each point belongs to the cluster with the closest center.
- Annotations
 - @Since( "0.8.0" )
 - Source
 - KMeansModel.scala
 
- Alphabetic
 - By Inheritance
 
- KMeansModel
 - PMMLExportable
 - Serializable
 - Serializable
 - Saveable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
- 
      
      
      
        
      
    
      
        
        new
      
      
        KMeansModel(centers: Iterable[Vector])
      
      
      
A Java-friendly constructor that takes an Iterable of Vectors.
A Java-friendly constructor that takes an Iterable of Vectors.
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        new
      
      
        KMeansModel(clusterCenters: Array[Vector])
      
      
      
- Annotations
 - @Since( "1.1.0" )
 
 -  new KMeansModel(clusterCenters: Array[Vector], distanceMeasure: String, trainingCost: Double, numIter: Int)
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        clusterCenters: Array[Vector]
      
      
      
- Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        computeCost(data: RDD[Vector]): Double
      
      
      
Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data.
Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data.
- Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        distanceMeasure: String
      
      
      
- Annotations
 - @Since( "2.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        k: Int
      
      
      
Total number of clusters.
Total number of clusters.
- Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(points: JavaRDD[Vector]): JavaRDD[Integer]
      
      
      
Maps given points to their cluster indices.
Maps given points to their cluster indices.
- Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(points: RDD[Vector]): RDD[Int]
      
      
      
Maps given points to their cluster indices.
Maps given points to their cluster indices.
- Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(point: Vector): Int
      
      
      
Returns the cluster index that a given point belongs to.
Returns the cluster index that a given point belongs to.
- Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(sc: SparkContext, path: String): Unit
      
      
      
Save this model to the given path.
Save this model to the given path.
This saves:
- human-readable (JSON) model metadata to path/metadata/
 - Parquet formatted data to path/data/
 
The model may be loaded using
Loader.load.- sc
 Spark context used to save model data.
- path
 Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.
- Definition Classes
 - KMeansModel → Saveable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toPMML(): String
      
      
      
Export the model to a String in PMML format
Export the model to a String in PMML format
- Definition Classes
 - PMMLExportable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toPMML(outputStream: OutputStream): Unit
      
      
      
Export the model to the OutputStream in PMML format
Export the model to the OutputStream in PMML format
- Definition Classes
 - PMMLExportable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toPMML(sc: SparkContext, path: String): Unit
      
      
      
Export the model to a directory on a distributed file system in PMML format
Export the model to a directory on a distributed file system in PMML format
- Definition Classes
 - PMMLExportable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toPMML(localPath: String): Unit
      
      
      
Export the model to a local file in PMML format
Export the model to a local file in PMML format
- Definition Classes
 - PMMLExportable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        trainingCost: Double
      
      
      
- Annotations
 - @Since( "2.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()