class GaussianMixtureModel extends Serializable with Saveable
Multivariate Gaussian Mixture Model (GMM) consisting of k Gaussians, where points are drawn from each Gaussian i=1..k with probability w(i); mu(i) and sigma(i) are the respective mean and covariance for each Gaussian distribution i=1..k.
- Annotations
 - @Since( "1.3.0" )
 - Source
 - GaussianMixtureModel.scala
 
- Alphabetic
 - By Inheritance
 
- GaussianMixtureModel
 - Saveable
 - Serializable
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
- 
      
      
      
        
      
    
      
        
        new
      
      
        GaussianMixtureModel(weights: Array[Double], gaussians: Array[MultivariateGaussian])
      
      
      
- weights
 Weights for each Gaussian distribution in the mixture, where weights(i) is the weight for Gaussian i, and weights.sum == 1
- gaussians
 Array of MultivariateGaussian where gaussians(i) represents the Multivariate Gaussian (Normal) Distribution for Gaussian i
- Annotations
 - @Since( "1.3.0" )
 
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        gaussians: Array[MultivariateGaussian]
      
      
      
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        k: Int
      
      
      
Number of gaussians in mixture
Number of gaussians in mixture
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(points: JavaRDD[Vector]): JavaRDD[Integer]
      
      
      
Java-friendly version of
predict()Java-friendly version of
predict()- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(point: Vector): Int
      
      
      
Maps given point to its cluster index.
Maps given point to its cluster index.
- Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(points: RDD[Vector]): RDD[Int]
      
      
      
Maps given points to their cluster indices.
Maps given points to their cluster indices.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictSoft(point: Vector): Array[Double]
      
      
      
Given the input vector, return the membership values to all mixture components.
Given the input vector, return the membership values to all mixture components.
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictSoft(points: RDD[Vector]): RDD[Array[Double]]
      
      
      
Given the input vectors, return the membership value of each vector to all mixture components.
Given the input vectors, return the membership value of each vector to all mixture components.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(sc: SparkContext, path: String): Unit
      
      
      
Save this model to the given path.
Save this model to the given path.
This saves:
- human-readable (JSON) model metadata to path/metadata/
 - Parquet formatted data to path/data/
 
The model may be loaded using
Loader.load.- sc
 Spark context used to save model data.
- path
 Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.
- Definition Classes
 - GaussianMixtureModel → Saveable
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        weights: Array[Double]
      
      
      
- Annotations
 - @Since( "1.3.0" )