class NaiveBayesModel extends ClassificationModel with Serializable with Saveable
Model for Naive Bayes Classifiers.
- Annotations
 - @Since( "0.9.0" )
 - Source
 - NaiveBayes.scala
 
- Alphabetic
 - By Inheritance
 
- NaiveBayesModel
 - Saveable
 - ClassificationModel
 - Serializable
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        labels: Array[Double]
      
      
      
- Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        modelType: String
      
      
      
- Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        pi: Array[Double]
      
      
      
- Annotations
 - @Since( "0.9.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(testData: Vector): Double
      
      
      
Predict values for a single data point using the model trained.
Predict values for a single data point using the model trained.
- testData
 array representing a single data point
- returns
 predicted category from the trained model
- Definition Classes
 - NaiveBayesModel → ClassificationModel
 - Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(testData: RDD[Vector]): RDD[Double]
      
      
      
Predict values for the given data set using the model trained.
Predict values for the given data set using the model trained.
- testData
 RDD representing data points to be predicted
- returns
 an RDD[Double] where each entry contains the corresponding prediction
- Definition Classes
 - NaiveBayesModel → ClassificationModel
 - Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predict(testData: JavaRDD[Vector]): JavaRDD[Double]
      
      
      
Predict values for examples stored in a JavaRDD.
Predict values for examples stored in a JavaRDD.
- testData
 JavaRDD representing data points to be predicted
- returns
 a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction
- Definition Classes
 - ClassificationModel
 - Annotations
 - @Since( "1.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictProbabilities(testData: Vector): Vector
      
      
      
Predict posterior class probabilities for a single data point using the model trained.
Predict posterior class probabilities for a single data point using the model trained.
- testData
 array representing a single data point
- returns
 predicted posterior class probabilities from the trained model, in the same order as class labels
- Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        predictProbabilities(testData: RDD[Vector]): RDD[Vector]
      
      
      
Predict values for the given data set using the model trained.
Predict values for the given data set using the model trained.
- testData
 RDD representing data points to be predicted
- returns
 an RDD[Vector] where each entry contains the predicted posterior class probabilities, in the same order as class labels
- Annotations
 - @Since( "1.5.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(sc: SparkContext, path: String): Unit
      
      
      
Save this model to the given path.
Save this model to the given path.
This saves:
- human-readable (JSON) model metadata to path/metadata/
 - Parquet formatted data to path/data/
 
The model may be loaded using
Loader.load.- sc
 Spark context used to save model data.
- path
 Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.
- Definition Classes
 - NaiveBayesModel → Saveable
 - Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        theta: Array[Array[Double]]
      
      
      
- Annotations
 - @Since( "0.9.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 
Deprecated Value Members
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] ) @Deprecated
 - Deprecated