class LogisticRegressionWithLBFGS extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable
Train a classification model for Multinomial/Binary Logistic Regression using Limited-memory BFGS. Standard feature scaling and L2 regularization are used by default.
Earlier implementations of LogisticRegressionWithLBFGS applies a regularization penalty to all elements including the intercept. If this is called with one of standard updaters (L1Updater, or SquaredL2Updater) this is translated into a call to ml.LogisticRegression, otherwise this will use the existing mllib GeneralizedLinearAlgorithm trainer, resulting in a regularization penalty to the intercept.
- Annotations
 - @Since( "1.1.0" )
 - Source
 - LogisticRegression.scala
 - Note
 Labels used in Logistic Regression should be {0, 1, ..., k - 1} for k classes multi-label classification problem.
- Alphabetic
 - By Inheritance
 
- LogisticRegressionWithLBFGS
 - GeneralizedLinearAlgorithm
 - Serializable
 - Serializable
 - Logging
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
-  new LogisticRegressionWithLBFGS()
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        addIntercept: Boolean
      
      
      
Whether to add intercept (default: false).
Whether to add intercept (default: false).
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        createModel(weights: Vector, intercept: Double): LogisticRegressionModel
      
      
      
Create a model given the weights and intercept
Create a model given the weights and intercept
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        generateInitialWeights(input: RDD[LabeledPoint]): Vector
      
      
      
Generate the initial weights when the user does not supply them
Generate the initial weights when the user does not supply them
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getNumFeatures: Int
      
      
      
The dimension of training features.
The dimension of training features.
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isAddIntercept: Boolean
      
      
      
Get if the algorithm uses addIntercept
Get if the algorithm uses addIntercept
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "1.4.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native() @IntrinsicCandidate()
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        numFeatures: Int
      
      
      
The dimension of training features.
The dimension of training features.
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        numOfLinearPredictor: Int
      
      
      
In
GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept.In
GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept. However, for multinomial logistic regression, with K possible outcomes, we are training K-1 independent binary logistic regression models which requires K-1 sets of linear predictor.As a result, the workaround here is if more than two sets of linear predictors are needed, we construct bigger
weightsvector which can hold both weights and intercepts. If the intercepts are added, the dimension ofweightswill be (numOfLinearPredictor) * (numFeatures + 1) . If the intercepts are not added, the dimension ofweightswill be (numOfLinearPredictor) * numFeatures.Thus, the intercepts will be encapsulated into weights, and we leave the value of intercept in GeneralizedLinearModel as zero.
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        optimizer: LBFGS
      
      
      
The optimizer to solve the problem.
The optimizer to solve the problem.
- Definition Classes
 - LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        run(input: RDD[LabeledPoint], initialWeights: Vector): LogisticRegressionModel
      
      
      
Run Logistic Regression with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided.
Run Logistic Regression with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided.
If a known updater is used calls the ml implementation, to avoid applying a regularization penalty to the intercept, otherwise defaults to the mllib implementation. If more than two classes or feature scaling is disabled, always uses mllib implementation. Uses user provided weights.
In the ml LogisticRegression implementation, the number of corrections used in the LBFGS update can not be configured. So
optimizer.setNumCorrections()will have no effect if we fall into that route.- Definition Classes
 - LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        run(input: RDD[LabeledPoint]): LogisticRegressionModel
      
      
      
Run Logistic Regression with the configured parameters on an input RDD of LabeledPoint entries.
Run Logistic Regression with the configured parameters on an input RDD of LabeledPoint entries.
If a known updater is used calls the ml implementation, to avoid applying a regularization penalty to the intercept, otherwise defaults to the mllib implementation. If more than two classes or feature scaling is disabled, always uses mllib implementation. If using ml implementation, uses ml code to generate initial weights.
- Definition Classes
 - LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setIntercept(addIntercept: Boolean): LogisticRegressionWithLBFGS.this.type
      
      
      
Set if the algorithm should add an intercept.
Set if the algorithm should add an intercept. Default false. We set the default to false because adding the intercept will cause memory allocation.
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setNumClasses(numClasses: Int): LogisticRegressionWithLBFGS.this.type
      
      
      
Set the number of possible outcomes for k classes classification problem in Multinomial Logistic Regression.
Set the number of possible outcomes for k classes classification problem in Multinomial Logistic Regression. By default, it is binary logistic regression so k will be set to 2.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setValidateData(validateData: Boolean): LogisticRegressionWithLBFGS.this.type
      
      
      
Set if the algorithm should validate data before training.
Set if the algorithm should validate data before training. Default true.
- Definition Classes
 - GeneralizedLinearAlgorithm
 - Annotations
 - @Since( "0.8.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        var
      
      
        validateData: Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        validators: List[(RDD[LabeledPoint]) ⇒ Boolean]
      
      
      
- Attributes
 - protected
 - Definition Classes
 - LogisticRegressionWithLBFGS → GeneralizedLinearAlgorithm
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 
Deprecated Value Members
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] ) @Deprecated
 - Deprecated