class NaiveBayesModel extends ClassificationModel with Serializable with Saveable
Model for Naive Bayes Classifiers.
- Annotations
 - @Since("0.9.0")
 - Source
 - NaiveBayes.scala
 
- Alphabetic
 - By Inheritance
 
- NaiveBayesModel
 - Saveable
 - ClassificationModel
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - Protected
 
Value Members
-   final  def !=(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def ##: Int
- Definition Classes
 - AnyRef → Any
 
 -   final  def ==(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def asInstanceOf[T0]: T0
- Definition Classes
 - Any
 
 -    def clone(): AnyRef
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
 -   final  def eq(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -    def equals(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def getClass(): Class[_ <: AnyRef]
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def hashCode(): Int
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def isInstanceOf[T0]: Boolean
- Definition Classes
 - Any
 
 -    val labels: Array[Double]
- Annotations
 - @Since("1.0.0")
 
 -    val modelType: String
- Annotations
 - @Since("1.4.0")
 
 -   final  def ne(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -   final  def notify(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def notifyAll(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    val pi: Array[Double]
- Annotations
 - @Since("0.9.0")
 
 -    def predict(testData: Vector): Double
Predict values for a single data point using the model trained.
Predict values for a single data point using the model trained.
- testData
 array representing a single data point
- returns
 predicted category from the trained model
- Definition Classes
 - NaiveBayesModel → ClassificationModel
 - Annotations
 - @Since("1.0.0")
 
 -    def predict(testData: RDD[Vector]): RDD[Double]
Predict values for the given data set using the model trained.
Predict values for the given data set using the model trained.
- testData
 RDD representing data points to be predicted
- returns
 an RDD[Double] where each entry contains the corresponding prediction
- Definition Classes
 - NaiveBayesModel → ClassificationModel
 - Annotations
 - @Since("1.0.0")
 
 -    def predict(testData: JavaRDD[Vector]): JavaRDD[Double]
Predict values for examples stored in a JavaRDD.
Predict values for examples stored in a JavaRDD.
- testData
 JavaRDD representing data points to be predicted
- returns
 a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction
- Definition Classes
 - ClassificationModel
 - Annotations
 - @Since("1.0.0")
 
 -    def predictProbabilities(testData: Vector): Vector
Predict posterior class probabilities for a single data point using the model trained.
Predict posterior class probabilities for a single data point using the model trained.
- testData
 array representing a single data point
- returns
 predicted posterior class probabilities from the trained model, in the same order as class labels
- Annotations
 - @Since("1.5.0")
 
 -    def predictProbabilities(testData: RDD[Vector]): RDD[Vector]
Predict values for the given data set using the model trained.
Predict values for the given data set using the model trained.
- testData
 RDD representing data points to be predicted
- returns
 an RDD[Vector] where each entry contains the predicted posterior class probabilities, in the same order as class labels
- Annotations
 - @Since("1.5.0")
 
 -    def save(sc: SparkContext, path: String): Unit
Save this model to the given path.
Save this model to the given path.
This saves:
- human-readable (JSON) model metadata to path/metadata/
 - Parquet formatted data to path/data/
 
The model may be loaded using
Loader.load.- sc
 Spark context used to save model data.
- path
 Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.
- Definition Classes
 - NaiveBayesModel → Saveable
 - Annotations
 - @Since("1.3.0")
 
 -   final  def synchronized[T0](arg0: => T0): T0
- Definition Classes
 - AnyRef
 
 -    val theta: Array[Array[Double]]
- Annotations
 - @Since("0.9.0")
 
 -    def toString(): String
- Definition Classes
 - AnyRef → Any
 
 -   final  def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -   final  def wait(arg0: Long): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException]) @native()
 
 -   final  def wait(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 
Deprecated Value Members
-    def finalize(): Unit
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.Throwable]) @Deprecated
 - Deprecated
 (Since version 9)