Package org.apache.spark.mllib.stat
Class KernelDensity
Object
org.apache.spark.mllib.stat.KernelDensity
- All Implemented Interfaces:
Serializable
Kernel density estimation. Given a sample from a population, estimate its probability density
function at each of the given evaluation points using kernels. Only Gaussian kernel is supported.
Scala example:
val sample = sc.parallelize(Seq(0.0, 1.0, 4.0, 4.0))
val kd = new KernelDensity()
.setSample(sample)
.setBandwidth(3.0)
val densities = kd.estimate(Array(-1.0, 2.0, 5.0))
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondouble[]estimate(double[] points) Estimates probability density function at the given array of points.static doublenormPdf(double mean, double standardDeviation, double logStandardDeviationPlusHalfLog2Pi, double x) Evaluates the PDF of a normal distribution.setBandwidth(double bandwidth) Sets the bandwidth (standard deviation) of the Gaussian kernel (default:1.0).Sets the sample to use for density estimation (for Java users).Sets the sample to use for density estimation.
-
Constructor Details
-
KernelDensity
public KernelDensity()
-
-
Method Details
-
normPdf
public static double normPdf(double mean, double standardDeviation, double logStandardDeviationPlusHalfLog2Pi, double x) Evaluates the PDF of a normal distribution. -
setBandwidth
Sets the bandwidth (standard deviation) of the Gaussian kernel (default:1.0).- Parameters:
bandwidth- (undocumented)- Returns:
- (undocumented)
-
setSample
Sets the sample to use for density estimation.- Parameters:
sample- (undocumented)- Returns:
- (undocumented)
-
setSample
Sets the sample to use for density estimation (for Java users).- Parameters:
sample- (undocumented)- Returns:
- (undocumented)
-
estimate
public double[] estimate(double[] points) Estimates probability density function at the given array of points.- Parameters:
points- (undocumented)- Returns:
- (undocumented)
-