Class Imputer
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,ImputerParams,Params,HasInputCol,HasInputCols,HasOutputCol,HasOutputCols,HasRelativeError,DefaultParamsWritable,Identifiable,MLWritable
Note when an input column is integer, the imputed value is casted (truncated) to an integer type. For example, if the input column is IntegerType (1, 2, 4, null), the output will be IntegerType (1, 2, 4, 2) after mean imputation.
Note that the mean/median/mode value is computed after filtering out missing values. All Null values in the input columns are treated as missing, and so are also imputed. For computing median, DataFrameStatFunctions.approxQuantile is used with a relative error of 0.001.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Fits a model to the input data.inputCol()Param for input column name.final StringArrayParamParam for input column names.static Imputerfinal DoubleParamThe placeholder for the missing values.Param for output column name.final StringArrayParamParam for output column names.static MLReader<T>read()final DoubleParamParam for the relative target precision for the approximate quantile algorithm.setInputCol(String value) setInputCols(String[] value) setMissingValue(double value) setOutputCol(String value) setOutputCols(String[] value) setRelativeError(double value) setStrategy(String value) Imputation strategy.strategy()The imputation strategy.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Methods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.param.shared.HasInputCol
getInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasInputCols
getInputColsMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputCols
getOutputColsMethods inherited from interface org.apache.spark.ml.param.shared.HasRelativeError
getRelativeErrorMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.ml.feature.ImputerParams
getInOutCols, getMissingValue, getStrategy, validateAndTransformSchemaMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
Imputer
-
Imputer
public Imputer()
-
-
Method Details
-
load
-
read
-
strategy
Description copied from interface:ImputerParamsThe imputation strategy. Currently only "mean" and "median" are supported. If "mean", then replace missing values using the mean value of the feature. If "median", then replace missing values using the approximate median value of the feature. If "mode", then replace missing using the most frequent value of the feature. Default: mean- Specified by:
strategyin interfaceImputerParams- Returns:
- (undocumented)
-
missingValue
Description copied from interface:ImputerParamsThe placeholder for the missing values. All occurrences of missingValue will be imputed. Note that null values are always treated as missing. Default: Double.NaN- Specified by:
missingValuein interfaceImputerParams- Returns:
- (undocumented)
-
relativeError
Description copied from interface:HasRelativeErrorParam for the relative target precision for the approximate quantile algorithm. Must be in the range [0, 1].- Specified by:
relativeErrorin interfaceHasRelativeError- Returns:
- (undocumented)
-
outputCols
Description copied from interface:HasOutputColsParam for output column names.- Specified by:
outputColsin interfaceHasOutputCols- Returns:
- (undocumented)
-
outputCol
Description copied from interface:HasOutputColParam for output column name.- Specified by:
outputColin interfaceHasOutputCol- Returns:
- (undocumented)
-
inputCols
Description copied from interface:HasInputColsParam for input column names.- Specified by:
inputColsin interfaceHasInputCols- Returns:
- (undocumented)
-
inputCol
Description copied from interface:HasInputColParam for input column name.- Specified by:
inputColin interfaceHasInputCol- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
setInputCol
-
setOutputCol
-
setInputCols
-
setOutputCols
-
setStrategy
Imputation strategy. Available options are ["mean", "median", "mode"].- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setMissingValue
-
setRelativeError
-
fit
Description copied from class:EstimatorFits a model to the input data.- Specified by:
fitin classEstimator<ImputerModel>- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classEstimator<ImputerModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-