abstract class DataFrameNaFunctions extends AnyRef
Functionality for working with missing data in DataFrames.
- Annotations
- @Stable()
- Source
- DataFrameNaFunctions.scala
- Since
1.3.1
- Alphabetic
- By Inheritance
- DataFrameNaFunctions
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new DataFrameNaFunctions()
Abstract Value Members
- abstract def drop(minNonNulls: Option[Int], cols: Seq[String]): DataFrame
- Attributes
- protected
- abstract def drop(minNonNulls: Option[Int]): DataFrame
- Attributes
- protected
- abstract def fill(value: Boolean, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFramethat replaces null values in specified boolean columns.(Scala-specific) Returns a new
DataFramethat replaces null values in specified boolean columns. If a specified column is not a boolean column, it is ignored.- Since
2.3.0
- abstract def fill(value: Boolean): DataFrame
Returns a new
DataFramethat replaces null values in boolean columns withvalue.Returns a new
DataFramethat replaces null values in boolean columns withvalue.- Since
2.3.0
- abstract def fill(value: String, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFramethat replaces null values in specified string columns.(Scala-specific) Returns a new
DataFramethat replaces null values in specified string columns. If a specified column is not a string column, it is ignored.- Since
1.3.1
- abstract def fill(value: Double, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFramethat replaces null or NaN values in specified numeric columns.(Scala-specific) Returns a new
DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
1.3.1
- abstract def fill(value: Long, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFramethat replaces null or NaN values in specified numeric columns.(Scala-specific) Returns a new
DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
2.2.0
- abstract def fill(value: String): DataFrame
Returns a new
DataFramethat replaces null values in string columns withvalue.Returns a new
DataFramethat replaces null values in string columns withvalue.- Since
1.3.1
- abstract def fill(value: Double): DataFrame
Returns a new
DataFramethat replaces null or NaN values in numeric columns withvalue.Returns a new
DataFramethat replaces null or NaN values in numeric columns withvalue.- Since
1.3.1
- abstract def fill(value: Long): DataFrame
Returns a new
DataFramethat replaces null or NaN values in numeric columns withvalue.Returns a new
DataFramethat replaces null or NaN values in numeric columns withvalue.- Since
2.2.0
- abstract def fillMap(values: Seq[(String, Any)]): DataFrame
- Attributes
- protected
- abstract def replace[T](cols: Seq[String], replacement: Map[T, T]): DataFrame
(Scala-specific) Replaces values matching keys in
replacementmap.(Scala-specific) Replaces values matching keys in
replacementmap.// Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace("height" :: "weight" :: Nil, Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace("firstname" :: "lastname" :: Nil, Map("UNKNOWN" -> "unnamed"));
- cols
list of columns to apply the value replacement. If
colis "*", replacement is applied on all string, numeric or boolean columns.- replacement
value replacement map. Key and value of
replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
1.3.1
- abstract def replace[T](col: String, replacement: Map[T, T]): DataFrame
(Scala-specific) Replaces values matching keys in
replacementmap.(Scala-specific) Replaces values matching keys in
replacementmap.// Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", Map("UNKNOWN" -> "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", Map("UNKNOWN" -> "unnamed"));
- col
name of the column to apply the value replacement. If
colis "*", replacement is applied on all string, numeric or boolean columns.- replacement
value replacement map. Key and value of
replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
1.3.1
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- def drop(minNonNulls: Int, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.(Scala-specific) Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.- Since
1.3.1
- def drop(minNonNulls: Int, cols: Array[String]): DataFrame
Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.- Since
1.3.1
- def drop(minNonNulls: Int): DataFrame
Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values.Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values.- Since
1.3.1
- def drop(how: String, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFramethat drops rows containing null or NaN values in the specified columns.(Scala-specific) Returns a new
DataFramethat drops rows containing null or NaN values in the specified columns.If
howis "any", then drop rows containing any null or NaN values in the specified columns. Ifhowis "all", then drop rows only if every specified column is null or NaN for that row.- Since
1.3.1
- def drop(how: String, cols: Array[String]): DataFrame
Returns a new
DataFramethat drops rows containing null or NaN values in the specified columns.Returns a new
DataFramethat drops rows containing null or NaN values in the specified columns.If
howis "any", then drop rows containing any null or NaN values in the specified columns. Ifhowis "all", then drop rows only if every specified column is null or NaN for that row.- Since
1.3.1
- def drop(cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFramethat drops rows containing any null or NaN values in the specified columns.(Scala-specific) Returns a new
DataFramethat drops rows containing any null or NaN values in the specified columns.- Since
1.3.1
- def drop(cols: Array[String]): DataFrame
Returns a new
DataFramethat drops rows containing any null or NaN values in the specified columns.Returns a new
DataFramethat drops rows containing any null or NaN values in the specified columns.- Since
1.3.1
- def drop(how: String): DataFrame
Returns a new
DataFramethat drops rows containing null or NaN values.Returns a new
DataFramethat drops rows containing null or NaN values.If
howis "any", then drop rows containing any null or NaN values. Ifhowis "all", then drop rows only if every column is null or NaN for that row.- Since
1.3.1
- def drop(): DataFrame
Returns a new
DataFramethat drops rows containing any null or NaN values.Returns a new
DataFramethat drops rows containing any null or NaN values.- Since
1.3.1
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def fill(valueMap: Map[String, Any]): DataFrame
(Scala-specific) Returns a new
DataFramethat replaces null values.(Scala-specific) Returns a new
DataFramethat replaces null values.The key of the map is the column name, and the value of the map is the replacement value. The value must be of the following type:
Int,Long,Float,Double,String,Boolean. Replacement values are cast to the column data type.For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
df.na.fill(Map( "A" -> "unknown", "B" -> 1.0 ))
- Since
1.3.1
- def fill(valueMap: Map[String, Any]): DataFrame
Returns a new
DataFramethat replaces null values.Returns a new
DataFramethat replaces null values.The key of the map is the column name, and the value of the map is the replacement value. The value must be of the following type:
Integer,Long,Float,Double,String,Boolean. Replacement values are cast to the column data type.For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
import com.google.common.collect.ImmutableMap; df.na.fill(ImmutableMap.of("A", "unknown", "B", 1.0));
- Since
1.3.1
- def fill(value: Boolean, cols: Array[String]): DataFrame
Returns a new
DataFramethat replaces null values in specified boolean columns.Returns a new
DataFramethat replaces null values in specified boolean columns. If a specified column is not a boolean column, it is ignored.- Since
2.3.0
- def fill(value: String, cols: Array[String]): DataFrame
Returns a new
DataFramethat replaces null values in specified string columns.Returns a new
DataFramethat replaces null values in specified string columns. If a specified column is not a string column, it is ignored.- Since
1.3.1
- def fill(value: Double, cols: Array[String]): DataFrame
Returns a new
DataFramethat replaces null or NaN values in specified numeric columns.Returns a new
DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
1.3.1
- def fill(value: Long, cols: Array[String]): DataFrame
Returns a new
DataFramethat replaces null or NaN values in specified numeric columns.Returns a new
DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
2.2.0
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- def replace[T](cols: Array[String], replacement: Map[T, T]): DataFrame
Replaces values matching keys in
replacementmap with the corresponding values.Replaces values matching keys in
replacementmap with the corresponding values.import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace(new String[] {"height", "weight"}, ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace(new String[] {"firstname", "lastname"}, ImmutableMap.of("UNKNOWN", "unnamed"));
- cols
list of columns to apply the value replacement. If
colis "*", replacement is applied on all string, numeric or boolean columns.- replacement
value replacement map. Key and value of
replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
1.3.1
- def replace[T](col: String, replacement: Map[T, T]): DataFrame
Replaces values matching keys in
replacementmap with the corresponding values.Replaces values matching keys in
replacementmap with the corresponding values.import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", ImmutableMap.of("UNKNOWN", "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", ImmutableMap.of("UNKNOWN", "unnamed"));
- col
name of the column to apply the value replacement. If
colis "*", replacement is applied on all string, numeric or boolean columns.- replacement
value replacement map. Key and value of
replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
1.3.1
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)