Class GradientBoostedTreesModel
Object
org.apache.spark.mllib.tree.model.GradientBoostedTreesModel
- All Implemented Interfaces:
Serializable,Saveable
Represents a gradient boosted trees model.
param: algo algorithm for the ensemble model, either Classification or Regression param: trees tree ensembles param: treeWeights tree ensemble weights
- See Also:
-
Constructor Summary
ConstructorsConstructorDescriptionGradientBoostedTreesModel(scala.Enumeration.Value algo, DecisionTreeModel[] trees, double[] treeWeights) -
Method Summary
Modifier and TypeMethodDescriptionscala.Enumeration.Valuealgo()computeInitialPredictionAndError(RDD<LabeledPoint> data, double initTreeWeight, DecisionTreeModel initTree, Loss loss) Compute the initial predictions and errors for a dataset for the first iteration of gradient boosting.double[]evaluateEachIteration(RDD<LabeledPoint> data, Loss loss) Method to compute error or loss for every iteration of gradient boosting.static GradientBoostedTreesModelload(SparkContext sc, String path) static org.apache.spark.internal.Logging.LogStringContextLogStringContext(scala.StringContext sc) intnumTrees()Get number of trees in ensemble.static org.slf4j.Loggerstatic voidorg$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) Java-friendly version oforg.apache.spark.mllib.tree.model.TreeEnsembleModel.predict.doublePredict values for a single data point using the model trained.Predict values for the given data set.voidsave(SparkContext sc, String path) Save this model to the given path.Print the full model to a string.toString()Print a summary of the model.intGet total number of nodes, summed over all trees in the ensemble.trees()double[]updatePredictionError(RDD<LabeledPoint> data, RDD<scala.Tuple2<Object, Object>> predictionAndError, double treeWeight, DecisionTreeModel tree, Loss loss) Update a zipped predictionError RDD (as obtained with computeInitialPredictionAndError)
-
Constructor Details
-
GradientBoostedTreesModel
public GradientBoostedTreesModel(scala.Enumeration.Value algo, DecisionTreeModel[] trees, double[] treeWeights)
-
-
Method Details
-
computeInitialPredictionAndError
public static RDD<scala.Tuple2<Object,Object>> computeInitialPredictionAndError(RDD<LabeledPoint> data, double initTreeWeight, DecisionTreeModel initTree, Loss loss) Compute the initial predictions and errors for a dataset for the first iteration of gradient boosting.- Parameters:
data- : training data.initTreeWeight- : learning rate assigned to the first tree.initTree- : first DecisionTreeModel.loss- : evaluation metric.- Returns:
- an RDD with each element being a zip of the prediction and error corresponding to every sample.
-
updatePredictionError
public static RDD<scala.Tuple2<Object,Object>> updatePredictionError(RDD<LabeledPoint> data, RDD<scala.Tuple2<Object, Object>> predictionAndError, double treeWeight, DecisionTreeModel tree, Loss loss) Update a zipped predictionError RDD (as obtained with computeInitialPredictionAndError)- Parameters:
data- : training data.predictionAndError- : predictionError RDDtreeWeight- : Learning rate.tree- : Tree using which the prediction and error should be updated.loss- : evaluation metric.- Returns:
- an RDD with each element being a zip of the prediction and error corresponding to each sample.
-
load
- Parameters:
sc- Spark context used for loading model files.path- Path specifying the directory to which the model was saved.- Returns:
- Model instance
-
algo
public scala.Enumeration.Value algo() -
trees
-
treeWeights
public double[] treeWeights() -
save
Description copied from interface:SaveableSave this model to the given path.This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
The model may be loaded using
Loader.load. -
evaluateEachIteration
Method to compute error or loss for every iteration of gradient boosting.- Parameters:
data- RDD ofLabeledPointloss- evaluation metric.- Returns:
- an array with index i having the losses or errors for the ensemble containing the first i+1 trees
-
org$apache$spark$internal$Logging$$log_
public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_() -
org$apache$spark$internal$Logging$$log__$eq
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) -
LogStringContext
public static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc) -
predict
Predict values for a single data point using the model trained.- Parameters:
features- array representing a single data point- Returns:
- predicted category from the trained model
-
predict
Predict values for the given data set.- Parameters:
features- RDD representing data points to be predicted- Returns:
- RDD[Double] where each entry contains the corresponding prediction
-
predict
Java-friendly version oforg.apache.spark.mllib.tree.model.TreeEnsembleModel.predict.- Parameters:
features- (undocumented)- Returns:
- (undocumented)
-
toString
Print a summary of the model. -
toDebugString
Print the full model to a string.- Returns:
- (undocumented)
-
numTrees
public int numTrees()Get number of trees in ensemble.- Returns:
- (undocumented)
-
totalNumNodes
public int totalNumNodes()Get total number of nodes, summed over all trees in the ensemble.- Returns:
- (undocumented)
-