Class NaiveBayesModel
Object
org.apache.spark.mllib.classification.NaiveBayesModel
- All Implemented Interfaces:
Serializable,ClassificationModel,Saveable
Model for Naive Bayes Classifiers.
param: labels list of labels param: pi log of class priors, whose dimension is C, number of labels param: theta log of class conditional probabilities, whose dimension is C-by-D, where D is number of features param: modelType The type of NB model to fit can be "multinomial" or "bernoulli"
- See Also:
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic classstatic class -
Method Summary
Modifier and TypeMethodDescriptiondouble[]labels()static NaiveBayesModelload(SparkContext sc, String path) double[]pi()doublePredict values for a single data point using the model trained.Predict values for the given data set using the model trained.predictProbabilities(Vector testData) Predict posterior class probabilities for a single data point using the model trained.predictProbabilities(RDD<Vector> testData) Predict values for the given data set using the model trained.voidsave(SparkContext sc, String path) Save this model to the given path.double[][]theta()Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.mllib.classification.ClassificationModel
predict
-
Method Details
-
load
-
labels
public double[] labels() -
pi
public double[] pi() -
theta
public double[][] theta() -
modelType
-
predict
Description copied from interface:ClassificationModelPredict values for the given data set using the model trained.- Specified by:
predictin interfaceClassificationModel- Parameters:
testData- RDD representing data points to be predicted- Returns:
- an RDD[Double] where each entry contains the corresponding prediction
-
predict
Description copied from interface:ClassificationModelPredict values for a single data point using the model trained.- Specified by:
predictin interfaceClassificationModel- Parameters:
testData- array representing a single data point- Returns:
- predicted category from the trained model
-
predictProbabilities
Predict values for the given data set using the model trained.- Parameters:
testData- RDD representing data points to be predicted- Returns:
- an RDD[Vector] where each entry contains the predicted posterior class probabilities, in the same order as class labels
-
predictProbabilities
Predict posterior class probabilities for a single data point using the model trained.- Parameters:
testData- array representing a single data point- Returns:
- predicted posterior class probabilities from the trained model, in the same order as class labels
-
save
Description copied from interface:SaveableSave this model to the given path.This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
The model may be loaded using
Loader.load.
-