Package org.apache.spark.ml.tuning
Class TrainValidationSplit
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<TrainValidationSplitModel>
org.apache.spark.ml.tuning.TrainValidationSplit
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,Params,HasCollectSubModels,HasParallelism,HasSeed,TrainValidationSplitParams,ValidatorParams,Identifiable,MLWritable
public class TrainValidationSplit
extends Estimator<TrainValidationSplitModel>
implements TrainValidationSplitParams, HasParallelism, HasCollectSubModels, MLWritable, org.apache.spark.internal.Logging
Validation for hyper-parameter tuning.
Randomly splits the input dataset into train and validation sets,
and uses evaluation metric on the validation set to select the best model.
Similar to
CrossValidator, but only splits the set once.- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionfinal BooleanParamParam for whether to collect a list of sub-models trained during tuning.Creates a copy of this instance with the same UID and some extra params.param for the estimator to be validatedparam for estimator param mapsparam for the evaluator used to select hyper-parameters that maximize the validated metricFits a model to the input data.static TrainValidationSplitThe number of threads to use when running parallel algorithms.static MLReader<TrainValidationSplit>read()final LongParamseed()Param for random seed.setCollectSubModels(boolean value) Whether to collect submodels when fitting.setEstimator(Estimator<?> value) setEstimatorParamMaps(ParamMap[] value) setEvaluator(Evaluator value) setParallelism(int value) Set the maximum level of parallelism to evaluate models in parallel.setSeed(long value) setTrainRatio(double value) Param for ratio between train and validation data.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasCollectSubModels
getCollectSubModelsMethods inherited from interface org.apache.spark.ml.param.shared.HasParallelism
getExecutionContext, getParallelismMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.tuning.TrainValidationSplitParams
getTrainRatioMethods inherited from interface org.apache.spark.ml.tuning.ValidatorParams
getEstimator, getEstimatorParamMaps, getEvaluator, logTuningParams, transformSchemaImpl
-
Constructor Details
-
TrainValidationSplit
-
TrainValidationSplit
public TrainValidationSplit()
-
-
Method Details
-
read
-
load
-
collectSubModels
Description copied from interface:HasCollectSubModelsParam for whether to collect a list of sub-models trained during tuning. If set to false, then only the single best sub-model will be available after fitting. If set to true, then all sub-models will be available. Warning: For large models, collecting all sub-models can cause OOMs on the Spark driver.- Specified by:
collectSubModelsin interfaceHasCollectSubModels- Returns:
- (undocumented)
-
parallelism
Description copied from interface:HasParallelismThe number of threads to use when running parallel algorithms. Default is 1 for serial execution- Specified by:
parallelismin interfaceHasParallelism- Returns:
- (undocumented)
-
trainRatio
Description copied from interface:TrainValidationSplitParamsParam for ratio between train and validation data. Must be between 0 and 1. Default: 0.75- Specified by:
trainRatioin interfaceTrainValidationSplitParams- Returns:
- (undocumented)
-
estimator
Description copied from interface:ValidatorParamsparam for the estimator to be validated- Specified by:
estimatorin interfaceValidatorParams- Returns:
- (undocumented)
-
estimatorParamMaps
Description copied from interface:ValidatorParamsparam for estimator param maps- Specified by:
estimatorParamMapsin interfaceValidatorParams- Returns:
- (undocumented)
-
evaluator
Description copied from interface:ValidatorParamsparam for the evaluator used to select hyper-parameters that maximize the validated metric- Specified by:
evaluatorin interfaceValidatorParams- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
setEstimator
-
setEstimatorParamMaps
-
setEvaluator
-
setTrainRatio
-
setSeed
-
setParallelism
Set the maximum level of parallelism to evaluate models in parallel. Default is 1 for serial evaluation- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setCollectSubModels
Whether to collect submodels when fitting. If set, we can get submodels from the returned model.Note: If set this param, when you save the returned model, you can set an option "persistSubModels" to be "true" before saving, in order to save these submodels. You can check documents of
TrainValidationSplitModel.TrainValidationSplitModelWriterfor more information.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
fit
Description copied from class:EstimatorFits a model to the input data.- Specified by:
fitin classEstimator<TrainValidationSplitModel>- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classEstimator<TrainValidationSplitModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
writein interfaceMLWritable- Returns:
- (undocumented)
-