Package org.apache.spark.ml.tuning
Class CrossValidatorModel
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,Params,HasSeed,CrossValidatorParams,ValidatorParams,Identifiable,MLWritable
public class CrossValidatorModel
extends Model<CrossValidatorModel>
implements CrossValidatorParams, MLWritable
CrossValidatorModel contains the model with the highest average cross-validation
metric across folds and uses this model to transform input data. CrossValidatorModel
also tracks the metrics for each param map evaluated.
param: bestModel The best model selected from k-fold cross validation.
param: avgMetrics Average cross-validation metrics for each paramMap in
CrossValidator.estimatorParamMaps, in the corresponding order.
- See Also:
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic final classWriter for CrossValidatorModel.Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Method Summary
Modifier and TypeMethodDescriptiondouble[]Model<?>Creates a copy of this instance with the same UID and some extra params.param for the estimator to be validatedparam for estimator param mapsparam for the evaluator used to select hyper-parameters that maximize the validated metricfoldCol()Param for the column name of user specified fold number.booleanstatic CrossValidatorModelnumFolds()Param for number of folds for cross validation.static MLReader<CrossValidatorModel>read()final LongParamseed()Param for random seed.Model<?>[][]toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.tuning.CrossValidatorParams
getFoldCol, getNumFoldsMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.tuning.ValidatorParams
getEstimator, getEstimatorParamMaps, getEvaluator, logTuningParams, transformSchemaImpl
-
Method Details
-
read
-
load
-
numFolds
Description copied from interface:CrossValidatorParamsParam for number of folds for cross validation. Must be >= 2. Default: 3- Specified by:
numFoldsin interfaceCrossValidatorParams- Returns:
- (undocumented)
-
foldCol
Description copied from interface:CrossValidatorParamsParam for the column name of user specified fold number. Once this is specified,CrossValidatorwon't do random k-fold split. Note that this column should be integer type with range [0, numFolds) and Spark will throw exception on out-of-range fold numbers.- Specified by:
foldColin interfaceCrossValidatorParams- Returns:
- (undocumented)
-
estimator
Description copied from interface:ValidatorParamsparam for the estimator to be validated- Specified by:
estimatorin interfaceValidatorParams- Returns:
- (undocumented)
-
estimatorParamMaps
Description copied from interface:ValidatorParamsparam for estimator param maps- Specified by:
estimatorParamMapsin interfaceValidatorParams- Returns:
- (undocumented)
-
evaluator
Description copied from interface:ValidatorParamsparam for the evaluator used to select hyper-parameters that maximize the validated metric- Specified by:
evaluatorin interfaceValidatorParams- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
bestModel
-
avgMetrics
public double[] avgMetrics() -
subModels
- Returns:
- submodels represented in two dimension array. The index of outer array is the fold index, and the index of inner array corresponds to the ordering of estimatorParamMaps
- Throws:
IllegalArgumentException- if subModels are not available. To retrieve subModels, make sure to set collectSubModels to true before fitting.
-
hasSubModels
public boolean hasSubModels() -
transform
Description copied from class:TransformerTransforms the input dataset.- Specified by:
transformin classTransformer- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classModel<CrossValidatorModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
writein interfaceMLWritable- Returns:
- (undocumented)
-
toString
- Specified by:
toStringin interfaceIdentifiable- Overrides:
toStringin classObject
-