Package org.apache.spark.ml.feature
Class VarianceThresholdSelector
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<VarianceThresholdSelectorModel>
org.apache.spark.ml.feature.VarianceThresholdSelector
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,VarianceThresholdSelectorParams,Params,HasFeaturesCol,HasOutputCol,DefaultParamsWritable,Identifiable,MLWritable
public final class VarianceThresholdSelector
extends Estimator<VarianceThresholdSelectorModel>
implements VarianceThresholdSelectorParams, DefaultParamsWritable
Feature selector that removes all low-variance features. Features with a
(sample) variance not greater than the threshold will be removed. The default is to keep
all features with non-zero variance, i.e. remove the features that have the
same value in all samples.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Param for features column name.Fits a model to the input data.static VarianceThresholdSelectorParam for output column name.static MLReader<T>read()setFeaturesCol(String value) setOutputCol(String value) setVarianceThreshold(double value) transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.final DoubleParamParam for variance threshold.Methods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputColMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.feature.VarianceThresholdSelectorParams
getVarianceThreshold
-
Constructor Details
-
VarianceThresholdSelector
-
VarianceThresholdSelector
public VarianceThresholdSelector()
-
-
Method Details
-
load
-
read
-
varianceThreshold
Description copied from interface:VarianceThresholdSelectorParamsParam for variance threshold. Features with a variance not greater than this threshold will be removed. The default value is 0.0.- Specified by:
varianceThresholdin interfaceVarianceThresholdSelectorParams- Returns:
- (undocumented)
-
outputCol
Description copied from interface:HasOutputColParam for output column name.- Specified by:
outputColin interfaceHasOutputCol- Returns:
- (undocumented)
-
featuresCol
Description copied from interface:HasFeaturesColParam for features column name.- Specified by:
featuresColin interfaceHasFeaturesCol- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
setVarianceThreshold
-
setFeaturesCol
-
setOutputCol
-
fit
Description copied from class:EstimatorFits a model to the input data.- Specified by:
fitin classEstimator<VarianceThresholdSelectorModel>- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classEstimator<VarianceThresholdSelectorModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-