Package org.apache.spark.ml.feature
Class RobustScaler
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,RobustScalerParams,Params,HasInputCol,HasOutputCol,HasRelativeError,DefaultParamsWritable,Identifiable,MLWritable
public class RobustScaler
extends Estimator<RobustScalerModel>
implements RobustScalerParams, DefaultParamsWritable
Scale features using statistics that are robust to outliers.
RobustScaler removes the median and scales the data according to the quantile range.
The quantile range is by default IQR (Interquartile Range, quantile range between the
1st quartile = 25th quantile and the 3rd quartile = 75th quantile) but can be configured.
Centering and scaling happen independently on each feature by computing the relevant
statistics on the samples in the training set. Median and quantile range are then
stored to be used on later data using the transform method.
Standardization of a dataset is a common requirement for many machine learning estimators.
Typically this is done by removing the mean and scaling to unit variance. However,
outliers can often influence the sample mean / variance in a negative way.
In such cases, the median and the quantile range often give better results.
Note that NaN values are ignored in the computation of medians and ranges.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Fits a model to the input data.inputCol()Param for input column name.static RobustScalerlower()Lower quantile to calculate quantile range, shared by all features Default: 0.25Param for output column name.static MLReader<T>read()final DoubleParamParam for the relative target precision for the approximate quantile algorithm.setInputCol(String value) setLower(double value) setOutputCol(String value) setRelativeError(double value) setUpper(double value) setWithCentering(boolean value) setWithScaling(boolean value) transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.upper()Upper quantile to calculate quantile range, shared by all features Default: 0.75Whether to center the data with median before scaling.Whether to scale the data to quantile range.Methods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.param.shared.HasInputCol
getInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputColMethods inherited from interface org.apache.spark.ml.param.shared.HasRelativeError
getRelativeErrorMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.feature.RobustScalerParams
getLower, getUpper, getWithCentering, getWithScaling, validateAndTransformSchema
-
Constructor Details
-
RobustScaler
-
RobustScaler
public RobustScaler()
-
-
Method Details
-
load
-
read
-
lower
Description copied from interface:RobustScalerParamsLower quantile to calculate quantile range, shared by all features Default: 0.25- Specified by:
lowerin interfaceRobustScalerParams- Returns:
- (undocumented)
-
upper
Description copied from interface:RobustScalerParamsUpper quantile to calculate quantile range, shared by all features Default: 0.75- Specified by:
upperin interfaceRobustScalerParams- Returns:
- (undocumented)
-
withCentering
Description copied from interface:RobustScalerParamsWhether to center the data with median before scaling. It will build a dense output, so take care when applying to sparse input. Default: false- Specified by:
withCenteringin interfaceRobustScalerParams- Returns:
- (undocumented)
-
withScaling
Description copied from interface:RobustScalerParamsWhether to scale the data to quantile range. Default: true- Specified by:
withScalingin interfaceRobustScalerParams- Returns:
- (undocumented)
-
relativeError
Description copied from interface:HasRelativeErrorParam for the relative target precision for the approximate quantile algorithm. Must be in the range [0, 1].- Specified by:
relativeErrorin interfaceHasRelativeError- Returns:
- (undocumented)
-
outputCol
Description copied from interface:HasOutputColParam for output column name.- Specified by:
outputColin interfaceHasOutputCol- Returns:
- (undocumented)
-
inputCol
Description copied from interface:HasInputColParam for input column name.- Specified by:
inputColin interfaceHasInputCol- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
setInputCol
-
setOutputCol
-
setLower
-
setUpper
-
setWithCentering
-
setWithScaling
-
setRelativeError
-
fit
Description copied from class:EstimatorFits a model to the input data.- Specified by:
fitin classEstimator<RobustScalerModel>- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classEstimator<RobustScalerModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-