Package org.apache.spark.ml.feature
Class CountVectorizerModel
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,CountVectorizerParams,Params,HasInputCol,HasOutputCol,Identifiable,MLWritable
public class CountVectorizerModel
extends Model<CountVectorizerModel>
implements CountVectorizerParams, MLWritable
Converts a text document to a sparse vector of token counts.
param: vocabulary An Array over terms. Only the terms in the vocabulary will be counted.
- See Also:
-
Nested Class Summary
Nested ClassesNested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
ConstructorsConstructorDescriptionCountVectorizerModel(String[] vocabulary) CountVectorizerModel(String uid, String[] vocabulary) -
Method Summary
Modifier and TypeMethodDescriptionbinary()Binary toggle to control the output vector values.Creates a copy of this instance with the same UID and some extra params.inputCol()Param for input column name.static CountVectorizerModelmaxDF()Specifies the maximum number of different documents a term could appear in to be included in the vocabulary.minDF()Specifies the minimum number of different documents a term must appear in to be included in the vocabulary.minTF()Filter to ignore rare words in a document.Param for output column name.static MLReader<CountVectorizerModel>read()setBinary(boolean value) setInputCol(String value) setMinTF(double value) setOutputCol(String value) toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Max size of the vocabulary.String[]write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.feature.CountVectorizerParams
getBinary, getMaxDF, getMinDF, getMinTF, getVocabSize, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasInputCol
getInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputColMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
CountVectorizerModel
-
CountVectorizerModel
-
-
Method Details
-
read
-
load
-
vocabSize
Description copied from interface:CountVectorizerParamsMax size of the vocabulary. CountVectorizer will build a vocabulary that only considers the top vocabSize terms ordered by term frequency across the corpus.Default: 2^18^
- Specified by:
vocabSizein interfaceCountVectorizerParams- Returns:
- (undocumented)
-
minDF
Description copied from interface:CountVectorizerParamsSpecifies the minimum number of different documents a term must appear in to be included in the vocabulary. If this is an integer greater than or equal to 1, this specifies the number of documents the term must appear in; if this is a double in [0,1), then this specifies the fraction of documents.Default: 1.0
- Specified by:
minDFin interfaceCountVectorizerParams- Returns:
- (undocumented)
-
maxDF
Description copied from interface:CountVectorizerParamsSpecifies the maximum number of different documents a term could appear in to be included in the vocabulary. A term that appears more than the threshold will be ignored. If this is an integer greater than or equal to 1, this specifies the maximum number of documents the term could appear in; if this is a double in [0,1), then this specifies the maximum fraction of documents the term could appear in.Default: (2^63^) - 1
- Specified by:
maxDFin interfaceCountVectorizerParams- Returns:
- (undocumented)
-
minTF
Description copied from interface:CountVectorizerParamsFilter to ignore rare words in a document. For each document, terms with frequency/count less than the given threshold are ignored. If this is an integer greater than or equal to 1, then this specifies a count (of times the term must appear in the document); if this is a double in [0,1), then this specifies a fraction (out of the document's token count).Note that the parameter is only used in transform of
CountVectorizerModeland does not affect fitting.Default: 1.0
- Specified by:
minTFin interfaceCountVectorizerParams- Returns:
- (undocumented)
-
binary
Description copied from interface:CountVectorizerParamsBinary toggle to control the output vector values. If True, all nonzero counts (after minTF filter applied) are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. Default: false- Specified by:
binaryin interfaceCountVectorizerParams- Returns:
- (undocumented)
-
outputCol
Description copied from interface:HasOutputColParam for output column name.- Specified by:
outputColin interfaceHasOutputCol- Returns:
- (undocumented)
-
inputCol
Description copied from interface:HasInputColParam for input column name.- Specified by:
inputColin interfaceHasInputCol- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
vocabulary
-
setInputCol
-
setOutputCol
-
setMinTF
-
setBinary
-
transform
Description copied from class:TransformerTransforms the input dataset.- Specified by:
transformin classTransformer- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classModel<CountVectorizerModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
writein interfaceMLWritable- Returns:
- (undocumented)
-
toString
- Specified by:
toStringin interfaceIdentifiable- Overrides:
toStringin classObject
-