Package org.apache.spark.ml.evaluation
Class RankingEvaluator
Object
org.apache.spark.ml.evaluation.Evaluator
org.apache.spark.ml.evaluation.RankingEvaluator
- All Implemented Interfaces:
Serializable,Params,HasLabelCol,HasPredictionCol,DefaultParamsWritable,Identifiable,MLWritable
public class RankingEvaluator
extends Evaluator
implements HasPredictionCol, HasLabelCol, DefaultParamsWritable
:: Experimental ::
Evaluator for ranking, which expects two input columns: prediction and label.
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.doubleEvaluates model output and returns a scalar metric.intgetK()getMetrics(Dataset<?> dataset) Get a RankingMetrics, which can be used to get ranking metrics such as meanAveragePrecision, meanAveragePrecisionAtK, etc.booleanIndicates whether the metric returned byevaluateshould be maximized (true, default) or minimized (false).final IntParamk()param for ranking position value used in"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK".labelCol()Param for label column name.static RankingEvaluatorparam for metric name in evaluation (supports"meanAveragePrecision"(default),"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK")Param for prediction column name.static MLReader<T>read()setK(int value) setLabelCol(String value) setMetricName(String value) setPredictionCol(String value) toString()uid()An immutable unique ID for the object and its derivatives.Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionColMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
RankingEvaluator
-
RankingEvaluator
public RankingEvaluator()
-
-
Method Details
-
load
-
read
-
labelCol
Description copied from interface:HasLabelColParam for label column name.- Specified by:
labelColin interfaceHasLabelCol- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionColParam for prediction column name.- Specified by:
predictionColin interfaceHasPredictionCol- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
metricName
param for metric name in evaluation (supports"meanAveragePrecision"(default),"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK")- Returns:
- (undocumented)
-
getMetricName
-
setMetricName
-
k
param for ranking position value used in"meanAveragePrecisionAtK","precisionAtK","ndcgAtK","recallAtK". Must be > 0. The default value is 10.- Returns:
- (undocumented)
-
getK
public int getK() -
setK
-
setPredictionCol
-
setLabelCol
-
evaluate
Description copied from class:EvaluatorEvaluates model output and returns a scalar metric. The value ofEvaluator.isLargerBetter()specifies whether larger values are better. -
getMetrics
Get a RankingMetrics, which can be used to get ranking metrics such as meanAveragePrecision, meanAveragePrecisionAtK, etc.- Parameters:
dataset- a dataset that contains labels/observations and predictions.- Returns:
- RankingMetrics
-
isLargerBetter
public boolean isLargerBetter()Description copied from class:EvaluatorIndicates whether the metric returned byevaluateshould be maximized (true, default) or minimized (false). A given evaluator may support multiple metrics which may be maximized or minimized.- Overrides:
isLargerBetterin classEvaluator- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy(). -
toString
- Specified by:
toStringin interfaceIdentifiable- Overrides:
toStringin classObject
-