Package org.apache.spark.ml.clustering
Class KMeans
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,KMeansParams,Params,HasDistanceMeasure,HasFeaturesCol,HasMaxBlockSizeInMB,HasMaxIter,HasPredictionCol,HasSeed,HasSolver,HasTol,HasWeightCol,DefaultParamsWritable,Identifiable,MLWritable
K-means clustering with support for k-means|| initialization proposed by Bahmani et al.
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Param for The distance measure.Param for features column name.Fits a model to the input data.initMode()Param for the initialization algorithm.final IntParamParam for the number of steps for the k-means|| initialization mode.final IntParamk()The number of clusters to create (k).static KMeansfinal DoubleParamParam for Maximum memory in MB for stacking input data into blocks.final IntParammaxIter()Param for maximum number of iterations (>= 0).Param for prediction column name.static MLReader<T>read()final LongParamseed()Param for random seed.setDistanceMeasure(String value) setFeaturesCol(String value) setInitMode(String value) setInitSteps(int value) setK(int value) setMaxBlockSizeInMB(double value) Sets the value of parammaxBlockSizeInMB().setMaxIter(int value) setPredictionCol(String value) setSeed(long value) Sets the value of paramsolver().setTol(double value) setWeightCol(String value) Sets the value of paramweightCol().solver()Param for the name of optimization method used in KMeans.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Param for weight column name.Methods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.param.shared.HasDistanceMeasure
getDistanceMeasureMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMB
getMaxBlockSizeInMBMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightColMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.ml.clustering.KMeansParams
getInitMode, getInitSteps, getK, validateAndTransformSchemaMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
KMeans
-
KMeans
public KMeans()
-
-
Method Details
-
load
-
read
-
k
Description copied from interface:KMeansParamsThe number of clusters to create (k). Must be > 1. Note that it is possible for fewer than k clusters to be returned, for example, if there are fewer than k distinct points to cluster. Default: 2.- Specified by:
kin interfaceKMeansParams- Returns:
- (undocumented)
-
initMode
Description copied from interface:KMeansParamsParam for the initialization algorithm. This can be either "random" to choose random points as initial cluster centers, or "k-means||" to use a parallel variant of k-means++ (Bahmani et al., Scalable K-Means++, VLDB 2012). Default: k-means||.- Specified by:
initModein interfaceKMeansParams- Returns:
- (undocumented)
-
initSteps
Description copied from interface:KMeansParamsParam for the number of steps for the k-means|| initialization mode. This is an advanced setting -- the default of 2 is almost always enough. Must be > 0. Default: 2.- Specified by:
initStepsin interfaceKMeansParams- Returns:
- (undocumented)
-
solver
Description copied from interface:KMeansParamsParam for the name of optimization method used in KMeans. Supported options: - "auto": Automatically select the solver based on the input schema and sparsity: If input instances are arrays or input vectors are dense, set to "block". Else, set to "row". - "row": input instances are processed row by row, and triangle-inequality is applied to accelerate the training. - "block": input instances are stacked to blocks, and GEMM is applied to compute the distances. Default is "auto".- Specified by:
solverin interfaceHasSolver- Specified by:
solverin interfaceKMeansParams- Returns:
- (undocumented)
-
maxBlockSizeInMB
Description copied from interface:HasMaxBlockSizeInMBParam for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..- Specified by:
maxBlockSizeInMBin interfaceHasMaxBlockSizeInMB- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightColin interfaceHasWeightCol- Returns:
- (undocumented)
-
distanceMeasure
Description copied from interface:HasDistanceMeasureParam for The distance measure. Supported options: 'euclidean' and 'cosine'.- Specified by:
distanceMeasurein interfaceHasDistanceMeasure- Returns:
- (undocumented)
-
tol
Description copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0). -
predictionCol
Description copied from interface:HasPredictionColParam for prediction column name.- Specified by:
predictionColin interfaceHasPredictionCol- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
featuresCol
Description copied from interface:HasFeaturesColParam for features column name.- Specified by:
featuresColin interfaceHasFeaturesCol- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
maxIterin interfaceHasMaxIter- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classEstimator<KMeansModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
setFeaturesCol
-
setPredictionCol
-
setK
-
setInitMode
-
setDistanceMeasure
-
setInitSteps
-
setMaxIter
-
setTol
-
setSeed
-
setWeightCol
Sets the value of paramweightCol(). If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setSolver
Sets the value of paramsolver(). Default is "auto".- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setMaxBlockSizeInMB
Sets the value of parammaxBlockSizeInMB(). Default is 0.0, then 1.0 MB will be chosen.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
fit
Description copied from class:EstimatorFits a model to the input data.- Specified by:
fitin classEstimator<KMeansModel>- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-