Class GaussianMixtureModel
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,GaussianMixtureParams,Params,HasAggregationDepth,HasFeaturesCol,HasMaxIter,HasPredictionCol,HasProbabilityCol,HasSeed,HasTol,HasWeightCol,HasTrainingSummary<GaussianMixtureSummary>,Identifiable,MLWritable
param: weights Weight for each Gaussian distribution in the mixture.
This is a multinomial probability distribution over the k Gaussians,
where weights(i) is the weight for Gaussian i, and weights sum to 1.
param: gaussians Array of MultivariateGaussian where gaussians(i) represents
the Multivariate Gaussian (Normal) Distribution for Gaussian i
- See Also:
-
Nested Class Summary
Nested ClassesNested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Method Summary
Modifier and TypeMethodDescriptionfinal IntParamParam for suggested depth for treeAggregate (>= 2).Creates a copy of this instance with the same UID and some extra params.longParam for features column name.Retrieve Gaussian distributions as a DataFrame.final IntParamk()Number of independent Gaussians in the mixture model.static GaussianMixtureModelfinal IntParammaxIter()Param for maximum number of iterations (>= 0).intintParam for prediction column name.predictProbability(Vector features) Param for Column name for predicted class conditional probabilities.static MLReader<GaussianMixtureModel>read()final LongParamseed()Param for random seed.setFeaturesCol(String value) setPredictionCol(String value) setProbabilityCol(String value) summary()Gets summary of model on training set.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Param for weight column name.double[]weights()write()Returns aMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.clustering.GaussianMixtureParams
getK, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepth
getAggregationDepthMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasProbabilityCol
getProbabilityColMethods inherited from interface org.apache.spark.ml.util.HasTrainingSummary
hasSummary, setSummaryMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightColMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
read
-
load
-
k
Description copied from interface:GaussianMixtureParamsNumber of independent Gaussians in the mixture model. Must be greater than 1. Default: 2.- Specified by:
kin interfaceGaussianMixtureParams- Returns:
- (undocumented)
-
aggregationDepth
Description copied from interface:HasAggregationDepthParam for suggested depth for treeAggregate (>= 2).- Specified by:
aggregationDepthin interfaceHasAggregationDepth- Returns:
- (undocumented)
-
tol
Description copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0). -
probabilityCol
Description copied from interface:HasProbabilityColParam for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.- Specified by:
probabilityColin interfaceHasProbabilityCol- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightColin interfaceHasWeightCol- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionColParam for prediction column name.- Specified by:
predictionColin interfaceHasPredictionCol- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
featuresCol
Description copied from interface:HasFeaturesColParam for features column name.- Specified by:
featuresColin interfaceHasFeaturesCol- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
maxIterin interfaceHasMaxIter- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
weights
public double[] weights() -
gaussians
-
numFeatures
public int numFeatures() -
setFeaturesCol
-
setPredictionCol
-
setProbabilityCol
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classModel<GaussianMixtureModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
transform
Description copied from class:TransformerTransforms the input dataset.- Specified by:
transformin classTransformer- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
predict
-
predictProbability
-
gaussiansDF
Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. Two columns are defined: mean and cov. Schema:root |-- mean: vector (nullable = true) |-- cov: matrix (nullable = true)- Returns:
- (undocumented)
-
write
Returns aMLWriterinstance for this ML instance.For
GaussianMixtureModel, this does NOT currently save the trainingsummary(). An option to savesummary()may be added in the future.- Specified by:
writein interfaceMLWritable- Returns:
- (undocumented)
-
toString
- Specified by:
toStringin interfaceIdentifiable- Overrides:
toStringin classObject
-
summary
Gets summary of model on training set. An exception is thrown ifhasSummaryis false.- Specified by:
summaryin interfaceHasTrainingSummary<GaussianMixtureSummary>- Returns:
- (undocumented)
-
estimatedSize
public long estimatedSize()
-