Class LinearSVC
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<M>
org.apache.spark.ml.Predictor<FeaturesType,E,M>
org.apache.spark.ml.classification.Classifier<Vector,LinearSVC,LinearSVCModel>
org.apache.spark.ml.classification.LinearSVC
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,ClassifierParams,LinearSVCParams,Params,HasAggregationDepth,HasFeaturesCol,HasFitIntercept,HasLabelCol,HasMaxBlockSizeInMB,HasMaxIter,HasPredictionCol,HasRawPredictionCol,HasRegParam,HasStandardization,HasThreshold,HasTol,HasWeightCol,PredictorParams,DefaultParamsWritable,Identifiable,MLWritable
public class LinearSVC
extends Classifier<Vector,LinearSVC,LinearSVCModel>
implements LinearSVCParams, DefaultParamsWritable
Linear SVM Classifier
This binary classifier optimizes the Hinge Loss using the OWLQN optimizer. Only supports L2 regularization currently.
Since 3.1.0, it supports stacking instances into blocks and using GEMV for better performance. The block size will be 1.0 MB, if param maxBlockSizeInMB is set 0.0 by default.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionfinal IntParamParam for suggested depth for treeAggregate (>= 2).Creates a copy of this instance with the same UID and some extra params.final BooleanParamParam for whether to fit an intercept term.static LinearSVCfinal DoubleParamParam for Maximum memory in MB for stacking input data into blocks.final IntParammaxIter()Param for maximum number of iterations (>= 0).static MLReader<T>read()final DoubleParamregParam()Param for regularization parameter (>= 0).setAggregationDepth(int value) Suggested depth for treeAggregate (greater than or equal to 2).setFitIntercept(boolean value) Whether to fit an intercept term.setMaxBlockSizeInMB(double value) Sets the value of parammaxBlockSizeInMB().setMaxIter(int value) Set the maximum number of iterations.setRegParam(double value) Set the regularization parameter.setStandardization(boolean value) Whether to standardize the training features before fitting the model.setThreshold(double value) Set threshold in binary classification.setTol(double value) Set the convergence tolerance of iterations.setWeightCol(String value) Set the value of paramweightCol().final BooleanParamParam for whether to standardize the training features before fitting the model.final DoubleParamParam for threshold in binary classification prediction.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).uid()An immutable unique ID for the object and its derivatives.Param for weight column name.Methods inherited from class org.apache.spark.ml.classification.Classifier
rawPredictionCol, setRawPredictionColMethods inherited from class org.apache.spark.ml.Predictor
featuresCol, fit, labelCol, predictionCol, setFeaturesCol, setLabelCol, setPredictionCol, transformSchemaMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.classification.ClassifierParams
validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepth
getAggregationDepthMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
featuresCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasFitIntercept
getFitInterceptMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMB
getMaxBlockSizeInMBMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionCol
getRawPredictionCol, rawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRegParam
getRegParamMethods inherited from interface org.apache.spark.ml.param.shared.HasStandardization
getStandardizationMethods inherited from interface org.apache.spark.ml.param.shared.HasThreshold
getThresholdMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightColMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
LinearSVC
-
LinearSVC
public LinearSVC()
-
-
Method Details
-
load
-
read
-
threshold
Description copied from interface:LinearSVCParamsParam for threshold in binary classification prediction. For LinearSVC, this threshold is applied to the rawPrediction, rather than a probability. This threshold can be any real number, where Inf will make all predictions 0.0 and -Inf will make all predictions 1.0. Default: 0.0- Specified by:
thresholdin interfaceHasThreshold- Specified by:
thresholdin interfaceLinearSVCParams- Returns:
- (undocumented)
-
maxBlockSizeInMB
Description copied from interface:HasMaxBlockSizeInMBParam for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..- Specified by:
maxBlockSizeInMBin interfaceHasMaxBlockSizeInMB- Returns:
- (undocumented)
-
aggregationDepth
Description copied from interface:HasAggregationDepthParam for suggested depth for treeAggregate (>= 2).- Specified by:
aggregationDepthin interfaceHasAggregationDepth- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightColin interfaceHasWeightCol- Returns:
- (undocumented)
-
standardization
Description copied from interface:HasStandardizationParam for whether to standardize the training features before fitting the model.- Specified by:
standardizationin interfaceHasStandardization- Returns:
- (undocumented)
-
tol
Description copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0). -
fitIntercept
Description copied from interface:HasFitInterceptParam for whether to fit an intercept term.- Specified by:
fitInterceptin interfaceHasFitIntercept- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
maxIterin interfaceHasMaxIter- Returns:
- (undocumented)
-
regParam
Description copied from interface:HasRegParamParam for regularization parameter (>= 0).- Specified by:
regParamin interfaceHasRegParam- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
setRegParam
Set the regularization parameter. Default is 0.0.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setMaxIter
Set the maximum number of iterations. Default is 100.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setFitIntercept
Whether to fit an intercept term. Default is true.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setTol
Set the convergence tolerance of iterations. Smaller values will lead to higher accuracy at the cost of more iterations. Default is 1E-6.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setStandardization
Whether to standardize the training features before fitting the model. Default is true.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setWeightCol
Set the value of paramweightCol(). If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setThreshold
Set threshold in binary classification.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setAggregationDepth
Suggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setMaxBlockSizeInMB
Sets the value of parammaxBlockSizeInMB(). Default is 0.0, then 1.0 MB will be chosen.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().
-