class KMeansModel extends Saveable with Serializable with PMMLExportable
A clustering model for K-means. Each point belongs to the cluster with the closest center.
- Annotations
- @Since("0.8.0")
- Source
- KMeansModel.scala
- Alphabetic
- By Inheritance
- KMeansModel
- PMMLExportable
- Serializable
- Saveable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new KMeansModel(centers: Iterable[Vector])
A Java-friendly constructor that takes an Iterable of Vectors.
A Java-friendly constructor that takes an Iterable of Vectors.
- Annotations
- @Since("1.4.0")
- new KMeansModel(clusterCenters: Array[Vector])
- Annotations
- @Since("1.1.0")
- new KMeansModel(clusterCenters: Array[Vector], distanceMeasure: String, trainingCost: Double, numIter: Int)
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- val clusterCenters: Array[Vector]
- Annotations
- @Since("1.0.0")
- def computeCost(data: RDD[Vector]): Double
Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data.
Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data.
- Annotations
- @Since("0.8.0")
- val distanceMeasure: String
- Annotations
- @Since("2.4.0")
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def k: Int
Total number of clusters.
Total number of clusters.
- Annotations
- @Since("0.8.0")
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- def predict(points: JavaRDD[Vector]): JavaRDD[Integer]
Maps given points to their cluster indices.
Maps given points to their cluster indices.
- Annotations
- @Since("1.0.0")
- def predict(points: RDD[Vector]): RDD[Int]
Maps given points to their cluster indices.
Maps given points to their cluster indices.
- Annotations
- @Since("1.0.0")
- def predict(point: Vector): Int
Returns the cluster index that a given point belongs to.
Returns the cluster index that a given point belongs to.
- Annotations
- @Since("0.8.0")
- def save(sc: SparkContext, path: String): Unit
Save this model to the given path.
Save this model to the given path.
This saves:
- human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
The model may be loaded using
Loader.load
.- sc
Spark context used to save model data.
- path
Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.
- Definition Classes
- KMeansModel → Saveable
- Annotations
- @Since("1.4.0")
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toPMML(): String
Export the model to a String in PMML format
Export the model to a String in PMML format
- Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
- def toPMML(outputStream: OutputStream): Unit
Export the model to the OutputStream in PMML format
Export the model to the OutputStream in PMML format
- Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
- def toPMML(sc: SparkContext, path: String): Unit
Export the model to a directory on a distributed file system in PMML format
Export the model to a directory on a distributed file system in PMML format
- Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
- def toPMML(localPath: String): Unit
Export the model to a local file in PMML format
Export the model to a local file in PMML format
- Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
- def toString(): String
- Definition Classes
- AnyRef → Any
- val trainingCost: Double
- Annotations
- @Since("2.4.0")
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)