object RandomRDDs
Generator methods for creating RDDs comprised of i.i.d. samples from some distribution.
- Annotations
 - @Since( "1.1.0" )
 - Source
 - RandomRDDs.scala
 
- Alphabetic
 - By Inheritance
 
- RandomRDDs
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDD
      
      
      
RandomRDDs.exponentialJavaRDDwith the default number of partitions and the default seed.RandomRDDs.exponentialJavaRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDD
      
      
      
RandomRDDs.exponentialJavaRDDwith the default seed.RandomRDDs.exponentialJavaRDDwith the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
      
      
      
Java-friendly version of
RandomRDDs.exponentialRDD.Java-friendly version of
RandomRDDs.exponentialRDD.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.exponentialJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.exponentialJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.exponentialJavaVectorRDDwith the default seed.RandomRDDs.exponentialJavaVectorRDDwith the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
      
      
      
Java-friendly version of
RandomRDDs.exponentialVectorRDD.Java-friendly version of
RandomRDDs.exponentialVectorRDD.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        exponentialRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
      
      
      
Generates an RDD comprised of
i.i.d.samples from the exponential distribution with the input mean.Generates an RDD comprised of
i.i.d.samples from the exponential distribution with the input mean.- sc
 SparkContext used to create the RDD.
- mean
 Mean, or 1 / lambda, for the exponential distribution.
- size
 Size of the RDD.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Double] comprised of
i.i.d.samples ~ Pois(mean).
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        exponentialVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
      
      
      
Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the exponential distribution with the input mean.Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the exponential distribution with the input mean.- sc
 SparkContext used to create the RDD.
- mean
 Mean, or 1 / lambda, for the Exponential distribution.
- numRows
 Number of Vectors in the RDD.
- numCols
 Number of elements in each Vector.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism)- seed
 Random seed (default: a random long integer).
- returns
 RDD[Vector] with vectors containing
i.i.d.samples ~ Exp(mean).
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long): JavaDoubleRDD
      
      
      
RandomRDDs.gammaJavaRDDwith the default number of partitions and the default seed.RandomRDDs.gammaJavaRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int): JavaDoubleRDD
      
      
      
RandomRDDs.gammaJavaRDDwith the default seed.RandomRDDs.gammaJavaRDDwith the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
      
      
      
Java-friendly version of
RandomRDDs.gammaRDD.Java-friendly version of
RandomRDDs.gammaRDD.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.gammaJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.gammaJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.gammaJavaVectorRDDwith the default seed.RandomRDDs.gammaJavaVectorRDDwith the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
      
      
      
Java-friendly version of
RandomRDDs.gammaVectorRDD.Java-friendly version of
RandomRDDs.gammaVectorRDD.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        gammaRDD(sc: SparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
      
      
      
Generates an RDD comprised of
i.i.d.samples from the gamma distribution with the input shape and scale.Generates an RDD comprised of
i.i.d.samples from the gamma distribution with the input shape and scale.- sc
 SparkContext used to create the RDD.
- shape
 shape parameter (greater than 0) for the gamma distribution
- scale
 scale parameter (greater than 0) for the gamma distribution
- size
 Size of the RDD.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Double] comprised of
i.i.d.samples ~ Pois(mean).
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        gammaVectorRDD(sc: SparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
      
      
      
Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the gamma distribution with the input shape and scale.Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the gamma distribution with the input shape and scale.- sc
 SparkContext used to create the RDD.
- shape
 shape parameter (greater than 0) for the gamma distribution.
- scale
 scale parameter (greater than 0) for the gamma distribution.
- numRows
 Number of Vectors in the RDD.
- numCols
 Number of elements in each Vector.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism)- seed
 Random seed (default: a random long integer).
- returns
 RDD[Vector] with vectors containing
i.i.d.samples ~ Exp(mean).
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long): JavaDoubleRDD
      
      
      
RandomRDDs.logNormalJavaRDDwith the default number of partitions and the default seed.RandomRDDs.logNormalJavaRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long, numPartitions: Int): JavaDoubleRDD
      
      
      
RandomRDDs.logNormalJavaRDDwith the default seed.RandomRDDs.logNormalJavaRDDwith the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
      
      
      
Java-friendly version of
RandomRDDs.logNormalRDD.Java-friendly version of
RandomRDDs.logNormalRDD.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.logNormalJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.logNormalJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.logNormalJavaVectorRDDwith the default seed.RandomRDDs.logNormalJavaVectorRDDwith the default seed.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
      
      
      
Java-friendly version of
RandomRDDs.logNormalVectorRDD.Java-friendly version of
RandomRDDs.logNormalVectorRDD.- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logNormalRDD(sc: SparkContext, mean: Double, std: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
      
      
      
Generates an RDD comprised of
i.i.d.samples from the log normal distribution with the input mean and standard deviationGenerates an RDD comprised of
i.i.d.samples from the log normal distribution with the input mean and standard deviation- sc
 SparkContext used to create the RDD.
- mean
 mean for the log normal distribution
- std
 standard deviation for the log normal distribution
- size
 Size of the RDD.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Double] comprised of
i.i.d.samples ~ Pois(mean).
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logNormalVectorRDD(sc: SparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
      
      
      
Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from a log normal distribution.Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from a log normal distribution.- sc
 SparkContext used to create the RDD.
- mean
 Mean of the log normal distribution.
- std
 Standard deviation of the log normal distribution.
- numRows
 Number of Vectors in the RDD.
- numCols
 Number of elements in each Vector.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Vector] with vectors containing
i.i.d.samples.
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        normalJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDD
      
      
      
RandomRDDs.normalJavaRDDwith the default number of partitions and the default seed.RandomRDDs.normalJavaRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDD
      
      
      
RandomRDDs.normalJavaRDDwith the default seed.RandomRDDs.normalJavaRDDwith the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
      
      
      
Java-friendly version of
RandomRDDs.normalRDD.Java-friendly version of
RandomRDDs.normalRDD.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.normalJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.normalJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.normalJavaVectorRDDwith the default seed.RandomRDDs.normalJavaVectorRDDwith the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
      
      
      
Java-friendly version of
RandomRDDs.normalVectorRDD.Java-friendly version of
RandomRDDs.normalVectorRDD.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        normalRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
      
      
      
Generates an RDD comprised of
i.i.d.samples from the standard normal distribution.Generates an RDD comprised of
i.i.d.samples from the standard normal distribution.To transform the distribution in the generated RDD from standard normal to some other normal
N(mean, sigma2), useRandomRDDs.normalRDD(sc, n, p, seed).map(v => mean + sigma * v).- sc
 SparkContext used to create the RDD.
- size
 Size of the RDD.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Double] comprised of
i.i.d.samples ~ N(0.0, 1.0).
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        normalVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
      
      
      
Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the standard normal distribution.Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the standard normal distribution.- sc
 SparkContext used to create the RDD.
- numRows
 Number of Vectors in the RDD.
- numCols
 Number of elements in each Vector.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Vector] with vectors containing
i.i.d.samples ~N(0.0, 1.0).
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDD
      
      
      
RandomRDDs.poissonJavaRDDwith the default number of partitions and the default seed.RandomRDDs.poissonJavaRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDD
      
      
      
RandomRDDs.poissonJavaRDDwith the default seed.RandomRDDs.poissonJavaRDDwith the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
      
      
      
Java-friendly version of
RandomRDDs.poissonRDD.Java-friendly version of
RandomRDDs.poissonRDD.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.poissonJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.poissonJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.poissonJavaVectorRDDwith the default seed.RandomRDDs.poissonJavaVectorRDDwith the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
      
      
      
Java-friendly version of
RandomRDDs.poissonVectorRDD.Java-friendly version of
RandomRDDs.poissonVectorRDD.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        poissonRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
      
      
      
Generates an RDD comprised of
i.i.d.samples from the Poisson distribution with the input mean.Generates an RDD comprised of
i.i.d.samples from the Poisson distribution with the input mean.- sc
 SparkContext used to create the RDD.
- mean
 Mean, or lambda, for the Poisson distribution.
- size
 Size of the RDD.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Double] comprised of
i.i.d.samples ~ Pois(mean).
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        poissonVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
      
      
      
Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the Poisson distribution with the input mean.Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the Poisson distribution with the input mean.- sc
 SparkContext used to create the RDD.
- mean
 Mean, or lambda, for the Poisson distribution.
- numRows
 Number of Vectors in the RDD.
- numCols
 Number of elements in each Vector.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism)- seed
 Random seed (default: a random long integer).
- returns
 RDD[Vector] with vectors containing
i.i.d.samples ~ Pois(mean).
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long): JavaRDD[T]
      
      
      
RandomRDDs.randomJavaRDDwith the default seed & numPartitionsRandomRDDs.randomJavaRDDwith the default seed & numPartitions- Annotations
 - @Since( "1.6.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int): JavaRDD[T]
      
      
      
RandomRDDs.randomJavaRDDwith the default seed.RandomRDDs.randomJavaRDDwith the default seed.- Annotations
 - @Since( "1.6.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int, seed: Long): JavaRDD[T]
      
      
      
Generates an RDD comprised of
i.i.d.samples produced by the input RandomDataGenerator.Generates an RDD comprised of
i.i.d.samples produced by the input RandomDataGenerator.- jsc
 JavaSparkContext used to create the RDD.
- generator
 RandomDataGenerator used to populate the RDD.
- size
 Size of the RDD.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[T] comprised of
i.i.d.samples produced by generator.
- Annotations
 - @Since( "1.6.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.randomJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.randomJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.6.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
      
      
      
::
RandomRDDs.randomJavaVectorRDDwith the default seed.::
RandomRDDs.randomJavaVectorRDDwith the default seed.- Annotations
 - @Since( "1.6.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
      
      
      
Java-friendly version of
RandomRDDs.randomVectorRDD.Java-friendly version of
RandomRDDs.randomVectorRDD.- Annotations
 - @Since( "1.6.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        randomRDD[T](sc: SparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong())(implicit arg0: ClassTag[T]): RDD[T]
      
      
      
Generates an RDD comprised of
i.i.d.samples produced by the input RandomDataGenerator.Generates an RDD comprised of
i.i.d.samples produced by the input RandomDataGenerator.- sc
 SparkContext used to create the RDD.
- generator
 RandomDataGenerator used to populate the RDD.
- size
 Size of the RDD.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[T] comprised of
i.i.d.samples produced by generator.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        randomVectorRDD(sc: SparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
      
      
      
Generates an RDD[Vector] with vectors containing
i.i.d.samples produced by the input RandomDataGenerator.Generates an RDD[Vector] with vectors containing
i.i.d.samples produced by the input RandomDataGenerator.- sc
 SparkContext used to create the RDD.
- generator
 RandomDataGenerator used to populate the RDD.
- numRows
 Number of Vectors in the RDD.
- numCols
 Number of elements in each Vector.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Vector] with vectors containing
i.i.d.samples produced by generator.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        uniformJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDD
      
      
      
RandomRDDs.uniformJavaRDDwith the default number of partitions and the default seed.RandomRDDs.uniformJavaRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDD
      
      
      
RandomRDDs.uniformJavaRDDwith the default seed.RandomRDDs.uniformJavaRDDwith the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
      
      
      
Java-friendly version of
RandomRDDs.uniformRDD.Java-friendly version of
RandomRDDs.uniformRDD.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.uniformJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.uniformJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
      
      
      
RandomRDDs.uniformJavaVectorRDDwith the default seed.RandomRDDs.uniformJavaVectorRDDwith the default seed.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
      
      
      
Java-friendly version of
RandomRDDs.uniformVectorRDD.Java-friendly version of
RandomRDDs.uniformVectorRDD.- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        uniformRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
      
      
      
Generates an RDD comprised of
i.i.d.samples from the uniform distributionU(0.0, 1.0).Generates an RDD comprised of
i.i.d.samples from the uniform distributionU(0.0, 1.0).To transform the distribution in the generated RDD from
U(0.0, 1.0)toU(a, b), useRandomRDDs.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v).- sc
 SparkContext used to create the RDD.
- size
 Size of the RDD.
- numPartitions
 Number of partitions in the RDD (default:
sc.defaultParallelism).- seed
 Random seed (default: a random long integer).
- returns
 RDD[Double] comprised of
i.i.d.samples ~U(0.0, 1.0).
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        uniformVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
      
      
      
Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the uniform distribution onU(0.0, 1.0).Generates an RDD[Vector] with vectors containing
i.i.d.samples drawn from the uniform distribution onU(0.0, 1.0).- sc
 SparkContext used to create the RDD.
- numRows
 Number of Vectors in the RDD.
- numCols
 Number of elements in each Vector.
- numPartitions
 Number of partitions in the RDD.
- seed
 Seed for the RNG that generates the seed for the generator in each partition.
- returns
 RDD[Vector] with vectors containing i.i.d samples ~
U(0.0, 1.0).
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()