object SparseMatrix extends Serializable
Factory methods for org.apache.spark.mllib.linalg.SparseMatrix.
- Annotations
 - @Since( "1.3.0" )
 - Source
 - Matrices.scala
 
- Alphabetic
 - By Inheritance
 
- SparseMatrix
 - Serializable
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fromCOO(numRows: Int, numCols: Int, entries: Iterable[(Int, Int, Double)]): SparseMatrix
      
      
      
Generate a
SparseMatrixfrom Coordinate List (COO) format.Generate a
SparseMatrixfrom Coordinate List (COO) format. Input must be an array of (i, j, value) tuples. Entries that have duplicate values of i and j are added together. Tuples where value is equal to zero will be omitted.- numRows
 number of rows of the matrix
- numCols
 number of columns of the matrix
- entries
 Array of (i, j, value) tuples
- returns
 The corresponding
SparseMatrix
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fromML(m: ml.linalg.SparseMatrix): SparseMatrix
      
      
      
Convert new linalg type to spark.mllib type.
Convert new linalg type to spark.mllib type. Light copy; only copies references
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        spdiag(vector: Vector): SparseMatrix
      
      
      
Generate a diagonal matrix in
SparseMatrixformat from the supplied values.Generate a diagonal matrix in
SparseMatrixformat from the supplied values.- vector
 a
Vectorthat will form the values on the diagonal of the matrix- returns
 Square
SparseMatrixwith sizevalues.lengthxvalues.lengthand non-zerovalueson the diagonal
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        speye(n: Int): SparseMatrix
      
      
      
Generate an Identity Matrix in
SparseMatrixformat.Generate an Identity Matrix in
SparseMatrixformat.- n
 number of rows and columns of the matrix
- returns
 SparseMatrixwith sizenxnand values of ones on the diagonal
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        sprand(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix
      
      
      
Generate a
SparseMatrixconsisting ofi.i.d.Generate a
SparseMatrixconsisting ofi.i.d. uniform random numbers. The number of non-zero elements equal the ceiling ofnumRowsxnumColsxdensity- numRows
 number of rows of the matrix
- numCols
 number of columns of the matrix
- density
 the desired density for the matrix
- rng
 a random number generator
- returns
 SparseMatrixwith sizenumRowsxnumColsand values in U(0, 1)
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix
      
      
      
Generate a
SparseMatrixconsisting ofi.i.d.Generate a
SparseMatrixconsisting ofi.i.d. gaussian random numbers.- numRows
 number of rows of the matrix
- numCols
 number of columns of the matrix
- density
 the desired density for the matrix
- rng
 a random number generator
- returns
 SparseMatrixwith sizenumRowsxnumColsand values in N(0, 1)
- Annotations
 - @Since( "1.3.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()