class MulticlassMetrics extends AnyRef
Evaluator for multiclass classification.
- Annotations
 - @Since( "1.1.0" )
 - Source
 - MulticlassMetrics.scala
 
- Alphabetic
 - By Inheritance
 
- MulticlassMetrics
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Instance Constructors
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        accuracy: Double
      
      
      
Returns accuracy (equals to the total number of correctly classified instances out of the total number of instances.)
Returns accuracy (equals to the total number of correctly classified instances out of the total number of instances.)
- Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        confusionMatrix: Matrix
      
      
      
Returns confusion matrix: predicted classes are in columns, they are ordered by class label ascending, as in "labels"
Returns confusion matrix: predicted classes are in columns, they are ordered by class label ascending, as in "labels"
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fMeasure(label: Double): Double
      
      
      
Returns f1-measure for a given label (category)
Returns f1-measure for a given label (category)
- label
 the label.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fMeasure(label: Double, beta: Double): Double
      
      
      
Returns f-measure for a given label (category)
Returns f-measure for a given label (category)
- label
 the label.
- beta
 the beta parameter.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        falsePositiveRate(label: Double): Double
      
      
      
Returns false positive rate for a given label (category)
Returns false positive rate for a given label (category)
- label
 the label.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        hammingLoss: Double
      
      
      
Returns Hamming-loss
Returns Hamming-loss
- Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        labels: Array[Double]
      
      
      
Returns the sequence of labels in ascending order
Returns the sequence of labels in ascending order
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logLoss(eps: Double = 1e-15): Double
      
      
      
Returns the log-loss, aka logistic loss or cross-entropy loss.
Returns the log-loss, aka logistic loss or cross-entropy loss.
- eps
 log-loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)).
- Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        precision(label: Double): Double
      
      
      
Returns precision for a given label (category)
Returns precision for a given label (category)
- label
 the label.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        recall(label: Double): Double
      
      
      
Returns recall for a given label (category)
Returns recall for a given label (category)
- label
 the label.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        truePositiveRate(label: Double): Double
      
      
      
Returns true positive rate for a given label (category)
Returns true positive rate for a given label (category)
- label
 the label.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        weightedFMeasure(beta: Double): Double
      
      
      
Returns weighted averaged f-measure
Returns weighted averaged f-measure
- beta
 the beta parameter.
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        weightedFMeasure: Double
      
      
      
Returns weighted averaged f1-measure
Returns weighted averaged f1-measure
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        weightedFalsePositiveRate: Double
      
      
      
Returns weighted false positive rate
Returns weighted false positive rate
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        weightedPrecision: Double
      
      
      
Returns weighted averaged precision
Returns weighted averaged precision
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        weightedRecall: Double
      
      
      
Returns weighted averaged recall (equals to precision, recall and f-measure)
Returns weighted averaged recall (equals to precision, recall and f-measure)
- Annotations
 - @Since( "1.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        weightedTruePositiveRate: Double
      
      
      
Returns weighted true positive rate (equals to precision, recall and f-measure)
Returns weighted true positive rate (equals to precision, recall and f-measure)
- Annotations
 - @Since( "1.1.0" )