object KolmogorovSmirnovTest
Conduct the two-sided Kolmogorov Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution. For more information on KS Test:
- Annotations
 - @Since( "2.4.0" )
 - Source
 - KolmogorovSmirnovTest.scala
 - See also
 
- Alphabetic
 - By Inheritance
 
- KolmogorovSmirnovTest
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        test(dataset: Dataset[_], sampleCol: String, distName: String, params: Double*): DataFrame
      
      
      
Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality.
Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality. Currently supports the normal distribution, taking as parameters the mean and standard deviation.
- dataset
 A
Datasetor aDataFramecontaining the sample of data to test- sampleCol
 Name of sample column in dataset, of any numerical type
- distName
 a
Stringname for a theoretical distribution, currently only support "norm".- params
 Double*specifying the parameters to be used for the theoretical distribution. For "norm" distribution, the parameters includes mean and variance.- returns
 DataFrame containing the test result for the input sampled data. This DataFrame will contain a single Row with the following fields:
pValue: Doublestatistic: Double
- Annotations
 - @Since( "2.4.0" ) @varargs()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        test(dataset: Dataset[_], sampleCol: String, cdf: Function[Double, Double]): DataFrame
      
      
      
Java-friendly version of
test(dataset: DataFrame, sampleCol: String, cdf: Double => Double)Java-friendly version of
test(dataset: DataFrame, sampleCol: String, cdf: Double => Double)- Annotations
 - @Since( "2.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        test(dataset: Dataset[_], sampleCol: String, cdf: (Double) ⇒ Double): DataFrame
      
      
      
Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution.
Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution.
- dataset
 A
Datasetor aDataFramecontaining the sample of data to test- sampleCol
 Name of sample column in dataset, of any numerical type
- cdf
 a
Double => Doublefunction to calculate the theoretical CDF at a given value- returns
 DataFrame containing the test result for the input sampled data. This DataFrame will contain a single Row with the following fields:
pValue: Doublestatistic: Double
- Annotations
 - @Since( "2.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()