class BucketedRandomProjectionLSHModel extends LSHModel[BucketedRandomProjectionLSHModel] with BucketedRandomProjectionLSHParams
Model produced by BucketedRandomProjectionLSH, where multiple random vectors are stored. The
vectors are normalized to be unit vectors and each vector is used in a hash function:
   h_i(x) = floor(r_i.dot(x) / bucketLength)
where r_i is the i-th random unit vector. The number of buckets will be (max L2 norm of input
vectors) / bucketLength.
- Annotations
 - @Since( "2.1.0" )
 - Source
 - BucketedRandomProjectionLSH.scala
 
- Grouped
 - Alphabetic
 - By Inheritance
 
- BucketedRandomProjectionLSHModel
 - BucketedRandomProjectionLSHParams
 - LSHModel
 - MLWritable
 - LSHParams
 - HasOutputCol
 - HasInputCol
 - Model
 - Transformer
 - PipelineStage
 - Logging
 - Params
 - Serializable
 - Serializable
 - Identifiable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      
An alias for
getOrDefault().An alias for
getOrDefault().- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        approxNearestNeighbors(dataset: Dataset[_], key: Vector, numNearestNeighbors: Int): Dataset[_]
      
      
      
Overloaded method for approxNearestNeighbors.
Overloaded method for approxNearestNeighbors. Use "distCol" as default distCol.
- Definition Classes
 - LSHModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        approxNearestNeighbors(dataset: Dataset[_], key: Vector, numNearestNeighbors: Int, distCol: String): Dataset[_]
      
      
      
Given a large dataset and an item, approximately find at most k items which have the closest distance to the item.
Given a large dataset and an item, approximately find at most k items which have the closest distance to the item. If the outputCol is missing, the method will transform the data; if the outputCol exists, it will use the outputCol. This allows caching of the transformed data when necessary.
- dataset
 The dataset to search for nearest neighbors of the key.
- key
 Feature vector representing the item to search for.
- numNearestNeighbors
 The maximum number of nearest neighbors.
- distCol
 Output column for storing the distance between each result row and the key.
- returns
 A dataset containing at most k items closest to the key. A column "distCol" is added to show the distance between each row and the key.
- Definition Classes
 - LSHModel
 - Note
 This method is experimental and will likely change behavior in the next release.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        approxSimilarityJoin(datasetA: Dataset[_], datasetB: Dataset[_], threshold: Double): Dataset[_]
      
      
      
Overloaded method for approxSimilarityJoin.
Overloaded method for approxSimilarityJoin. Use "distCol" as default distCol.
- Definition Classes
 - LSHModel
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        approxSimilarityJoin(datasetA: Dataset[_], datasetB: Dataset[_], threshold: Double, distCol: String): Dataset[_]
      
      
      
Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold.
Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold. If the outputCol is missing, the method will transform the data; if the outputCol exists, it will use the outputCol. This allows caching of the transformed data when necessary.
- datasetA
 One of the datasets to join.
- datasetB
 Another dataset to join.
- threshold
 The threshold for the distance of row pairs.
- distCol
 Output column for storing the distance between each pair of rows.
- returns
 A joined dataset containing pairs of rows. The original rows are in columns "datasetA" and "datasetB", and a column "distCol" is added to show the distance between each pair.
- Definition Classes
 - LSHModel
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        bucketLength: DoubleParam
      
      
      
The length of each hash bucket, a larger bucket lowers the false negative rate.
The length of each hash bucket, a larger bucket lowers the false negative rate. The number of buckets will be
(max L2 norm of input vectors) / bucketLength.If input vectors are normalized, 1-10 times of pow(numRecords, -1/inputDim) would be a reasonable value
- Definition Classes
 - BucketedRandomProjectionLSHParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): BucketedRandomProjectionLSHModel.this.type
      
      
      
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): BucketedRandomProjectionLSHModel
      
      
      
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy().- Definition Classes
 - BucketedRandomProjectionLSHModel → Model → Transformer → PipelineStage → Params
 - Annotations
 - @Since( "2.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
      
      
      
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
 the target instance, which should work with the same set of default Params as this source instance
- extra
 extra params to be copied to the target's
paramMap- returns
 the target instance with param values copied
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      
Explains a param.
Explains a param.
- param
 input param, must belong to this instance.
- returns
 a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      
Explains all params of this instance.
Explains all params of this instance. See
explainParam().- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      
extractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getBucketLength: Double
      
      
      
- Definition Classes
 - BucketedRandomProjectionLSHParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getInputCol: String
      
      
      
- Definition Classes
 - HasInputCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getNumHashTables: Int
      
      
      
- Definition Classes
 - LSHParams
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      
- Definition Classes
 - HasOutputCol
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      
Gets a param by its name.
Gets a param by its name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      
Indicates whether this Model has a corresponding parent.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashDistance(x: Array[Vector], y: Array[Vector]): Double
      
      
      
Calculate the distance between two different hash Vectors.
Calculate the distance between two different hash Vectors.
- x
 One of the hash vector.
- y
 Another hash vector.
- returns
 The distance between hash vectors x and y.
- Attributes
 - protected[ml]
 - Definition Classes
 - BucketedRandomProjectionLSHModel → LSHModel
 - Annotations
 - @Since( "2.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashFunction(elems: Vector): Array[Vector]
      
      
      
The hash function of LSH, mapping an input feature vector to multiple hash vectors.
The hash function of LSH, mapping an input feature vector to multiple hash vectors.
- returns
 The mapping of LSH function.
- Attributes
 - protected[ml]
 - Definition Classes
 - BucketedRandomProjectionLSHModel → LSHModel
 - Annotations
 - @Since( "2.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCol: Param[String]
      
      
      
Param for input column name.
Param for input column name.
- Definition Classes
 - HasInputCol
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        keyDistance(x: Vector, y: Vector): Double
      
      
      
Calculate the distance between two different keys using the distance metric corresponding to the hashFunction.
Calculate the distance between two different keys using the distance metric corresponding to the hashFunction.
- x
 One input vector in the metric space.
- y
 One input vector in the metric space.
- returns
 The distance between x and y.
- Attributes
 - protected[ml]
 - Definition Classes
 - BucketedRandomProjectionLSHModel → LSHModel
 - Annotations
 - @Since( "2.1.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        numHashTables: IntParam
      
      
      
Param for the number of hash tables used in LSH OR-amplification.
Param for the number of hash tables used in LSH OR-amplification.
LSH OR-amplification can be used to reduce the false negative rate. Higher values for this param lead to a reduced false negative rate, at the expense of added computational complexity.
- Definition Classes
 - LSHParams
 
 - 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      
Param for output column name.
Param for output column name.
- Definition Classes
 - HasOutputCol
 
 - 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
 - Params
 - Note
 Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
 - 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[BucketedRandomProjectionLSHModel]
      
      
      
The parent estimator that produced this model.
The parent estimator that produced this model.
- Definition Classes
 - Model
 - Note
 For ensembles' component Models, this value can be null.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      
Saves this ML instance to the input path, a shortcut of
write.save(path).Saves this ML instance to the input path, a shortcut of
write.save(path).- Definition Classes
 - MLWritable
 - Annotations
 - @Since( "1.6.0" ) @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): BucketedRandomProjectionLSHModel.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): BucketedRandomProjectionLSHModel.this.type
      
      
      
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): BucketedRandomProjectionLSHModel.this.type
      
      
      
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): BucketedRandomProjectionLSHModel.this.type
      
      
      
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
 a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
 - protected
 - Definition Classes
 - Params
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): BucketedRandomProjectionLSHModel.this.type
      
      
      
Sets a default value for a param.
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCol(value: String): BucketedRandomProjectionLSHModel.this.type
      
      
      
- Definition Classes
 - BucketedRandomProjectionLSHModel → LSHModel
 - Annotations
 - @Since( "2.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setOutputCol(value: String): BucketedRandomProjectionLSHModel.this.type
      
      
      
- Definition Classes
 - BucketedRandomProjectionLSHModel → LSHModel
 - Annotations
 - @Since( "2.4.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[BucketedRandomProjectionLSHModel]): BucketedRandomProjectionLSHModel
      
      
      
Sets the parent of this model (Java API).
Sets the parent of this model (Java API).
- Definition Classes
 - Model
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - BucketedRandomProjectionLSHModel → Identifiable → AnyRef → Any
 - Annotations
 - @Since( "3.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      
Transforms the input dataset.
Transforms the input dataset.
- Definition Classes
 - LSHModel → Transformer
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
 input dataset
- paramMap
 additional parameters, overwrite embedded params
- returns
 transformed dataset
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
 input dataset
- firstParamPair
 the first param pair, overwrite embedded params
- otherParamPairs
 other param pairs, overwrite embedded params
- returns
 transformed dataset
- Definition Classes
 - Transformer
 - Annotations
 - @Since( "2.0.0" ) @varargs()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
 - LSHModel → PipelineStage
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
 - protected
 - Definition Classes
 - PipelineStage
 - Annotations
 - @DeveloperApi()
 
 - 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
 - BucketedRandomProjectionLSHModel → Identifiable
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        validateAndTransformSchema(schema: StructType): StructType
      
      
      
Transform the Schema for LSH
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      
Returns an
MLWriterinstance for this ML instance.Returns an
MLWriterinstance for this ML instance.- Definition Classes
 - BucketedRandomProjectionLSHModel → MLWritable
 - Annotations
 - @Since( "2.1.0" )
 
 
Inherited from BucketedRandomProjectionLSHParams
Inherited from LSHModel[BucketedRandomProjectionLSHModel]
Inherited from MLWritable
Inherited from LSHParams
Inherited from HasOutputCol
Inherited from HasInputCol
Inherited from Model[BucketedRandomProjectionLSHModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.