Package org.apache.spark.rdd
Class OrderedRDDFunctions<K,V,P extends scala.Product2<K,V>>
Object
org.apache.spark.rdd.OrderedRDDFunctions<K,V,P>
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,scala.Serializable
public class OrderedRDDFunctions<K,V,P extends scala.Product2<K,V>>
extends Object
implements org.apache.spark.internal.Logging, scala.Serializable
Extra functions available on RDDs of (key, value) pairs where the key is sortable through
an implicit conversion. They will work with any key type
K
that has an implicit Ordering[K]
in scope. Ordering objects already exist for all of the standard primitive types. Users can also
define their own orderings for custom types, or to override the default ordering. The implicit
ordering that is in the closest scope will be used.
import org.apache.spark.SparkContext._
val rdd: RDD[(String, Int)] = ...
implicit val caseInsensitiveOrdering = new Ordering[String] {
override def compare(a: String, b: String) =
a.toLowerCase(Locale.ROOT).compare(b.toLowerCase(Locale.ROOT))
}
// Sort by key, using the above case insensitive ordering.
rdd.sortByKey()
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionfilterByRange
(K lower, K upper) Returns an RDD containing only the elements in the inclusive rangelower
toupper
.repartitionAndSortWithinPartitions
(Partitioner partitioner) Repartition the RDD according to the given partitioner and, within each resulting partition, sort records by their keys.sortByKey
(boolean ascending, int numPartitions) Sort the RDD by key, so that each partition contains a sorted range of the elements.Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq
-
Constructor Details
-
OrderedRDDFunctions
-
-
Method Details
-
filterByRange
Returns an RDD containing only the elements in the inclusive rangelower
toupper
. If the RDD has been partitioned using aRangePartitioner
, then this operation can be performed efficiently by only scanning the partitions that might contain matching elements. Otherwise, a standardfilter
is applied to all partitions.- Parameters:
lower
- (undocumented)upper
- (undocumented)- Returns:
- (undocumented)
-
repartitionAndSortWithinPartitions
Repartition the RDD according to the given partitioner and, within each resulting partition, sort records by their keys.This is more efficient than calling
repartition
and then sorting within each partition because it can push the sorting down into the shuffle machinery.- Parameters:
partitioner
- (undocumented)- Returns:
- (undocumented)
-
sortByKey
Sort the RDD by key, so that each partition contains a sorted range of the elements. Callingcollect
orsave
on the resulting RDD will return or output an ordered list of records (in thesave
case, they will be written to multiplepart-X
files in the filesystem, in order of the keys).- Parameters:
ascending
- (undocumented)numPartitions
- (undocumented)- Returns:
- (undocumented)
-