Package org.apache.spark.ml.regression
Class IsotonicRegressionModel
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<IsotonicRegressionModel>
org.apache.spark.ml.regression.IsotonicRegressionModel
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,Params
,HasFeaturesCol
,HasLabelCol
,HasPredictionCol
,HasWeightCol
,IsotonicRegressionBase
,Identifiable
,MLWritable
,scala.Serializable
public class IsotonicRegressionModel
extends Model<IsotonicRegressionModel>
implements IsotonicRegressionBase, MLWritable
Model fitted by IsotonicRegression.
Predicts using a piecewise linear function.
For detailed rules see org.apache.spark.mllib.regression.IsotonicRegressionModel.predict()
.
param: oldModel A IsotonicRegressionModel
model trained by IsotonicRegression
.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Method Summary
Modifier and TypeMethodDescriptionBoundaries in increasing order for which predictions are known.Creates a copy of this instance with the same UID and some extra params.final IntParam
Param for the index of the feature iffeaturesCol
is a vector column (default:0
), no effect otherwise.Param for features column name.final BooleanParam
isotonic()
Param for whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false).labelCol()
Param for label column name.static IsotonicRegressionModel
int
double
predict
(double value) Param for prediction column name.Predictions associated with the boundaries at the same index, monotone because of isotonic regression.static MLReader<IsotonicRegressionModel>
read()
setFeatureIndex
(int value) setFeaturesCol
(String value) setPredictionCol
(String value) toString()
Transforms the input dataset.transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.Param for weight column name.write()
Returns anMLWriter
instance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transform
Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightCol
Methods inherited from interface org.apache.spark.ml.regression.IsotonicRegressionBase
extractWeightedLabeledPoints, getFeatureIndex, getIsotonic, hasWeightCol, validateAndTransformSchema
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
read
-
load
-
isotonic
Description copied from interface:IsotonicRegressionBase
Param for whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true- Specified by:
isotonic
in interfaceIsotonicRegressionBase
- Returns:
- (undocumented)
-
featureIndex
Description copied from interface:IsotonicRegressionBase
Param for the index of the feature iffeaturesCol
is a vector column (default:0
), no effect otherwise.- Specified by:
featureIndex
in interfaceIsotonicRegressionBase
- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightCol
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightCol
in interfaceHasWeightCol
- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionCol
Param for prediction column name.- Specified by:
predictionCol
in interfaceHasPredictionCol
- Returns:
- (undocumented)
-
labelCol
Description copied from interface:HasLabelCol
Param for label column name.- Specified by:
labelCol
in interfaceHasLabelCol
- Returns:
- (undocumented)
-
featuresCol
Description copied from interface:HasFeaturesCol
Param for features column name.- Specified by:
featuresCol
in interfaceHasFeaturesCol
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
setFeaturesCol
-
setPredictionCol
-
setFeatureIndex
-
boundaries
Boundaries in increasing order for which predictions are known. -
predictions
Predictions associated with the boundaries at the same index, monotone because of isotonic regression.- Returns:
- (undocumented)
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classModel<IsotonicRegressionModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-
transform
Description copied from class:Transformer
Transforms the input dataset.- Specified by:
transform
in classTransformer
- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
predict
public double predict(double value) -
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchema
in classPipelineStage
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritable
Returns anMLWriter
instance for this ML instance.- Specified by:
write
in interfaceMLWritable
- Returns:
- (undocumented)
-
numFeatures
public int numFeatures() -
toString
- Specified by:
toString
in interfaceIdentifiable
- Overrides:
toString
in classObject
-