Package org.apache.spark.ml.feature
Class VarianceThresholdSelector
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<VarianceThresholdSelectorModel>
org.apache.spark.ml.feature.VarianceThresholdSelector
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,VarianceThresholdSelectorParams
,Params
,HasFeaturesCol
,HasOutputCol
,DefaultParamsWritable
,Identifiable
,MLWritable
,scala.Serializable
public final class VarianceThresholdSelector
extends Estimator<VarianceThresholdSelectorModel>
implements VarianceThresholdSelectorParams, DefaultParamsWritable
Feature selector that removes all low-variance features. Features with a
(sample) variance not greater than the threshold will be removed. The default is to keep
all features with non-zero variance, i.e. remove the features that have the
same value in all samples.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Param for features column name.Fits a model to the input data.static VarianceThresholdSelector
Param for output column name.static MLReader<T>
read()
setFeaturesCol
(String value) setOutputCol
(String value) setVarianceThreshold
(double value) transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.final DoubleParam
Param for variance threshold.Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
write
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputCol
Methods inherited from interface org.apache.spark.ml.util.Identifiable
toString
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
Methods inherited from interface org.apache.spark.ml.feature.VarianceThresholdSelectorParams
getVarianceThreshold
-
Constructor Details
-
VarianceThresholdSelector
-
VarianceThresholdSelector
public VarianceThresholdSelector()
-
-
Method Details
-
load
-
read
-
varianceThreshold
Description copied from interface:VarianceThresholdSelectorParams
Param for variance threshold. Features with a variance not greater than this threshold will be removed. The default value is 0.0.- Specified by:
varianceThreshold
in interfaceVarianceThresholdSelectorParams
- Returns:
- (undocumented)
-
outputCol
Description copied from interface:HasOutputCol
Param for output column name.- Specified by:
outputCol
in interfaceHasOutputCol
- Returns:
- (undocumented)
-
featuresCol
Description copied from interface:HasFeaturesCol
Param for features column name.- Specified by:
featuresCol
in interfaceHasFeaturesCol
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
setVarianceThreshold
-
setFeaturesCol
-
setOutputCol
-
fit
Description copied from class:Estimator
Fits a model to the input data.- Specified by:
fit
in classEstimator<VarianceThresholdSelectorModel>
- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchema
in classPipelineStage
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classEstimator<VarianceThresholdSelectorModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-