Package org.apache.spark.ml.clustering
Class KMeansModel
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,KMeansParams
,Params
,HasDistanceMeasure
,HasFeaturesCol
,HasMaxBlockSizeInMB
,HasMaxIter
,HasPredictionCol
,HasSeed
,HasSolver
,HasTol
,HasWeightCol
,GeneralMLWritable
,HasTrainingSummary<KMeansSummary>
,Identifiable
,MLWritable
,scala.Serializable
public class KMeansModel
extends Model<KMeansModel>
implements KMeansParams, GeneralMLWritable, HasTrainingSummary<KMeansSummary>
Model fitted by KMeans.
param: parentModel a model trained by spark.mllib.clustering.KMeans.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Method Summary
Modifier and TypeMethodDescriptionVector[]
Creates a copy of this instance with the same UID and some extra params.Param for The distance measure.Param for features column name.initMode()
Param for the initialization algorithm.final IntParam
Param for the number of steps for the k-means|| initialization mode.final IntParam
k()
The number of clusters to create (k).static KMeansModel
final DoubleParam
Param for Maximum memory in MB for stacking input data into blocks.final IntParam
maxIter()
Param for maximum number of iterations (>= 0).int
int
Param for prediction column name.static MLReader<KMeansModel>
read()
final LongParam
seed()
Param for random seed.setFeaturesCol
(String value) setPredictionCol
(String value) solver()
Param for the name of optimization method used in KMeans.summary()
Gets summary of model on training set.final DoubleParam
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).toString()
Transforms the input dataset.transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.Param for weight column name.write()
Returns aGeneralMLWriter
instance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transform
Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.param.shared.HasDistanceMeasure
getDistanceMeasure
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMB
getMaxBlockSizeInMB
Methods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIter
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol
Methods inherited from interface org.apache.spark.ml.util.HasTrainingSummary
hasSummary, setSummary
Methods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightCol
Methods inherited from interface org.apache.spark.ml.clustering.KMeansParams
getInitMode, getInitSteps, getK, validateAndTransformSchema
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
read
-
load
-
k
Description copied from interface:KMeansParams
The number of clusters to create (k). Must be > 1. Note that it is possible for fewer than k clusters to be returned, for example, if there are fewer than k distinct points to cluster. Default: 2.- Specified by:
k
in interfaceKMeansParams
- Returns:
- (undocumented)
-
initMode
Description copied from interface:KMeansParams
Param for the initialization algorithm. This can be either "random" to choose random points as initial cluster centers, or "k-means||" to use a parallel variant of k-means++ (Bahmani et al., Scalable K-Means++, VLDB 2012). Default: k-means||.- Specified by:
initMode
in interfaceKMeansParams
- Returns:
- (undocumented)
-
initSteps
Description copied from interface:KMeansParams
Param for the number of steps for the k-means|| initialization mode. This is an advanced setting -- the default of 2 is almost always enough. Must be > 0. Default: 2.- Specified by:
initSteps
in interfaceKMeansParams
- Returns:
- (undocumented)
-
solver
Description copied from interface:KMeansParams
Param for the name of optimization method used in KMeans. Supported options: - "auto": Automatically select the solver based on the input schema and sparsity: If input instances are arrays or input vectors are dense, set to "block". Else, set to "row". - "row": input instances are processed row by row, and triangle-inequality is applied to accelerate the training. - "block": input instances are stacked to blocks, and GEMM is applied to compute the distances. Default is "auto".- Specified by:
solver
in interfaceHasSolver
- Specified by:
solver
in interfaceKMeansParams
- Returns:
- (undocumented)
-
maxBlockSizeInMB
Description copied from interface:HasMaxBlockSizeInMB
Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..- Specified by:
maxBlockSizeInMB
in interfaceHasMaxBlockSizeInMB
- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightCol
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightCol
in interfaceHasWeightCol
- Returns:
- (undocumented)
-
distanceMeasure
Description copied from interface:HasDistanceMeasure
Param for The distance measure. Supported options: 'euclidean' and 'cosine'.- Specified by:
distanceMeasure
in interfaceHasDistanceMeasure
- Returns:
- (undocumented)
-
tol
Description copied from interface:HasTol
Param for the convergence tolerance for iterative algorithms (>= 0). -
predictionCol
Description copied from interface:HasPredictionCol
Param for prediction column name.- Specified by:
predictionCol
in interfaceHasPredictionCol
- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeed
Param for random seed. -
featuresCol
Description copied from interface:HasFeaturesCol
Param for features column name.- Specified by:
featuresCol
in interfaceHasFeaturesCol
- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIter
Param for maximum number of iterations (>= 0).- Specified by:
maxIter
in interfaceHasMaxIter
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
numFeatures
public int numFeatures() -
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classModel<KMeansModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-
setFeaturesCol
-
setPredictionCol
-
transform
Description copied from class:Transformer
Transforms the input dataset.- Specified by:
transform
in classTransformer
- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchema
in classPipelineStage
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-
predict
-
clusterCenters
-
write
Returns aGeneralMLWriter
instance for this ML instance.For
KMeansModel
, this does NOT currently save the trainingsummary()
. An option to savesummary()
may be added in the future.- Specified by:
write
in interfaceGeneralMLWritable
- Specified by:
write
in interfaceMLWritable
- Returns:
- (undocumented)
-
toString
- Specified by:
toString
in interfaceIdentifiable
- Overrides:
toString
in classObject
-
summary
Gets summary of model on training set. An exception is thrown ifhasSummary
is false.- Specified by:
summary
in interfaceHasTrainingSummary<KMeansSummary>
- Returns:
- (undocumented)
-