final class DataStreamReader extends Logging
Interface used to load a streaming Dataset from external storage systems (e.g. file systems,
key-value stores, etc). Use SparkSession.readStream to access this.
- Annotations
 - @Evolving()
 - Source
 - DataStreamReader.scala
 - Since
 2.0.0
- Alphabetic
 - By Inheritance
 
- DataStreamReader
 - Logging
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        csv(path: String): DataFrame
      
      
      
Loads a CSV file stream and returns the result as a
DataFrame.Loads a CSV file stream and returns the result as a
DataFrame.This function will go through the input once to determine the input schema if
inferSchemais enabled. To avoid going through the entire data once, disableinferSchemaoption or specify the schema explicitly usingschema.You can set the following option(s):
maxFilesPerTrigger(default: no max limit): sets the maximum number of new files to be considered in every trigger.
You can find the CSV-specific options for reading CSV file stream in Data Source Option in the version you use.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        format(source: String): DataStreamReader
      
      
      
Specifies the input data source format.
Specifies the input data source format.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        json(path: String): DataFrame
      
      
      
Loads a JSON file stream and returns the results as a
DataFrame.Loads a JSON file stream and returns the results as a
DataFrame.JSON Lines (newline-delimited JSON) is supported by default. For JSON (one record per file), set the
multiLineoption to true.This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan.
You can set the following option(s):
maxFilesPerTrigger(default: no max limit): sets the maximum number of new files to be considered in every trigger.
You can find the JSON-specific options for reading JSON file stream in Data Source Option in the version you use.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        load(path: String): DataFrame
      
      
      
Loads input in as a
DataFrame, for data streams that read from some path.Loads input in as a
DataFrame, for data streams that read from some path.- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        load(): DataFrame
      
      
      
Loads input data stream in as a
DataFrame, for data streams that don't require a path (e.g.Loads input data stream in as a
DataFrame, for data streams that don't require a path (e.g. external key-value stores).- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        option(key: String, value: Double): DataStreamReader
      
      
      
Adds an input option for the underlying data source.
Adds an input option for the underlying data source.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        option(key: String, value: Long): DataStreamReader
      
      
      
Adds an input option for the underlying data source.
Adds an input option for the underlying data source.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        option(key: String, value: Boolean): DataStreamReader
      
      
      
Adds an input option for the underlying data source.
Adds an input option for the underlying data source.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        option(key: String, value: String): DataStreamReader
      
      
      
Adds an input option for the underlying data source.
Adds an input option for the underlying data source.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        options(options: Map[String, String]): DataStreamReader
      
      
      
(Java-specific) Adds input options for the underlying data source.
(Java-specific) Adds input options for the underlying data source.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        options(options: Map[String, String]): DataStreamReader
      
      
      
(Scala-specific) Adds input options for the underlying data source.
(Scala-specific) Adds input options for the underlying data source.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        orc(path: String): DataFrame
      
      
      
Loads a ORC file stream, returning the result as a
DataFrame.Loads a ORC file stream, returning the result as a
DataFrame.You can set the following option(s):
maxFilesPerTrigger(default: no max limit): sets the maximum number of new files to be considered in every trigger.
ORC-specific option(s) for reading ORC file stream can be found in Data Source Option in the version you use.
- Since
 2.3.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        parquet(path: String): DataFrame
      
      
      
Loads a Parquet file stream, returning the result as a
DataFrame.Loads a Parquet file stream, returning the result as a
DataFrame.You can set the following option(s):
maxFilesPerTrigger(default: no max limit): sets the maximum number of new files to be considered in every trigger.
Parquet-specific option(s) for reading Parquet file stream can be found in Data Source Option in the version you use.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        schema(schemaString: String): DataStreamReader
      
      
      
Specifies the schema by using the input DDL-formatted string.
Specifies the schema by using the input DDL-formatted string. Some data sources (e.g. JSON) can infer the input schema automatically from data. By specifying the schema here, the underlying data source can skip the schema inference step, and thus speed up data loading.
- Since
 2.3.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        schema(schema: StructType): DataStreamReader
      
      
      
Specifies the input schema.
Specifies the input schema. Some data sources (e.g. JSON) can infer the input schema automatically from data. By specifying the schema here, the underlying data source can skip the schema inference step, and thus speed up data loading.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        table(tableName: String): DataFrame
      
      
      
Define a Streaming DataFrame on a Table.
Define a Streaming DataFrame on a Table. The DataSource corresponding to the table should support streaming mode.
- tableName
 The name of the table
- Since
 3.1.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        text(path: String): DataFrame
      
      
      
Loads text files and returns a
DataFramewhose schema starts with a string column named "value", and followed by partitioned columns if there are any.Loads text files and returns a
DataFramewhose schema starts with a string column named "value", and followed by partitioned columns if there are any. The text files must be encoded as UTF-8.By default, each line in the text files is a new row in the resulting DataFrame. For example:
// Scala: spark.readStream.text("/path/to/directory/") // Java: spark.readStream().text("/path/to/directory/")
You can set the following option(s):
maxFilesPerTrigger(default: no max limit): sets the maximum number of new files to be considered in every trigger.
You can find the text-specific options for reading text files in Data Source Option in the version you use.
- Since
 2.0.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        textFile(path: String): Dataset[String]
      
      
      
Loads text file(s) and returns a
Datasetof String.Loads text file(s) and returns a
Datasetof String. The underlying schema of the Dataset contains a single string column named "value". The text files must be encoded as UTF-8.If the directory structure of the text files contains partitioning information, those are ignored in the resulting Dataset. To include partitioning information as columns, use
text.By default, each line in the text file is a new element in the resulting Dataset. For example:
// Scala: spark.readStream.textFile("/path/to/spark/README.md") // Java: spark.readStream().textFile("/path/to/spark/README.md")
You can set the text-specific options as specified in
DataStreamReader.text.- path
 input path
- Since
 2.1.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()